

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 1 of 76

Deliverable D2.4.1 - Collaborative MDE
Process Modeling

Task T.2.4 - Collaborative MDE Process Modelling

and assisted enactment

 NAME PARTNER DATE

WRITTEN BY LBATH R. (sections 1, 2)

KEDJI E. (section 3)

TRAN H. N. (section 3)

COULETTE B. (section 4)

EBERSOLD S. (section 4)

IRIT 01/01/2011

REVIEWED BY

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 2 of 76

RECORD OF REVISIONS

ISSUE DATE EFFECT ON REASONS FOR REVISION

PAGE PARA

1.0 December 13th,

2010

 Document creation

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 3 of 76

TABLE OF CONTENTS

1.	 INTRODUCTION 9	

1.1	 GOAL OF THIS DOCUMENT 9	

1.2	 DOCUMENT ORGANIZATION 10	

2.	 MDE PROCESS STRUCTRE MODELLING 10	

2.1	 INTRODUCTION 10	

2.2	 CM_SPEM PROCESS STRUCTURE OVERVIEW 11	

2.3	 CM_SPEM CORE 13	

2.3.1	 Newly Introduced Concepts 14	

2.3.2	 Extensible Element 14	

2.3.3	 Kind 15	

2.3.4	 ParameterDirectionKind 15	

2.3.5	 WorkDefinition 16	

2.3.6	 WorkDefinitionParameter 17	

2.3.7	 WorkDefinitionPerformer 17	

2.4	 CM_SPEM MODEL STRUCTURE 18	

2.4.1	 Model 19	

2.4.2	 Metamodel 19	

2.4.3	 ModelRelationship 19	

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 4 of 76

2.5	 CM_SPEM TRANSFORMATION STRUCTURE 20	

2.5.1	 Newly Introduced Concepts 20	

2.5.2	 Transformation 21	

2.5.3	 TypedModel 22	

2.5.4	 Metamodel 22	

2.5.5	 Metamodel Direction Kind 23	

2.6	 CM_SPEM ACTIVITY STRUCTURE 23	

2.6.1	 Newly Introduced Concepts 24	

2.6.2	 Activity 25	

2.6.3	 Breakdown Element 26	

2.6.4	 Work Breakdown Element 26	

2.6.5	 Work Sequence 27	

2.6.6	 Work Sequence Kind 28	

2.6.7	 Work Product Use 28	

2.6.8	 Model 29	

2.6.9	 Work Product Use Relationship 29	

2.6.10	 Process Parameter 30	

2.6.11	 Milestone 30	

2.6.12	 Role Use 31	

2.6.13	 Process Performer 32	

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 5 of 76

2.6.14	 Process Responsibility Assignment 33	

2.7	 EXAMPLE OF MDE PROCESS STRUCTURE DESCRIPTION WITH CM_SPEM 34	

2.7.1	 UWE Process Overview 34	

2.7.2	 Describing the UWE process with the CM_SPEM Process Structure concepts 34	

2.8	 CONCLUSION 43	

3.	 COLLABORATIVE MDE PROCESS MODELLING 44	

3.1	 INTRODUCTION 44	

3.2	 EXAMPLE 45	

3.2.1	 Situation 1: The same task carried out on several components 45	

3.2.2	 Situation 2: A task carried out by people playing different roles 46	

3.3	 THE COLLABORATION STRUCTURE PACKAGE 47	

3.3.1	 General overview 47	

3.3.2	 Newly introduced concepts 48	

3.3.3	 Concepts from SPEM 59	

3.3.4	 The CM_SPEM Base plug-in 60	

3.4	 MODELISATION OF THE EXAMPLE WITH CM_SPEM 62	

3.4.1	 Situation 1: The same task carried out on several components 63	

3.4.2	 Situation 2: A task carried out by people playing different roles 65	

3.5	 CONCLUSION 66	

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 6 of 76

4.	 VIEWPOINT-ORIENTED PROCESS MODELLING 66	

4.1	 INTRODUCTION 66	

4.2	 THE VIEWPOINT STRUCTURE PACKAGE 67	

4.2.1	 General overview 67	

4.2.2	 Recall: concepts coming from D2.1 deliverable 69	

4.2.3	 Newly introduced concepts 70	

4.3	 CONCLUSION 74	

5.	 CONCLUSION 74	

6.	 REFERENCES 76	

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 7 of 76

TABLE OF APPLICABLE DOCUMENTS

N° TITLE REFERENCE ISSUE DATE SOURCE

SIGLUM NAME

A1 ?????

A2 ?????

A3 ?????

A4 ?????

TABLE OF REFERENCED DOCUMENTS

N° TITLE REFERENCE ISSUE

R1 Galaxy glossary

R2 ?????

R3 ?????

R4 ?????

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 8 of 76

ACRONYMS AND DEFINITIONS

Except if explicitly stated otherwise the definition of all terms and acronyms provided in [R1] is applicable in

this document. If any, additional and/or specific definitions applicable only in this document are listed in the

two tables below.

Acronymes

ACRONYM DESCRIPTION

Definitions

TERMS DESCRIPTION

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 9 of 76

1. INTRODUCTION

1.1 GOAL OF THIS DOCUMENT

The work presented in the present document is a part of the task T2.4 of the Galaxy work package

WP2. The objective of this task is to define concepts and a methodology for modeling processes

that govern model-driven collaborative development, so called Collaborative MDE Processes. The

final aim is to use such process models in order to provide a computer-assisted enactment.

The main issues addressed in task T2.4 are:

1. Process structure. As we know from the existing process modelling formalisms (e.g. SPEM

[OMG, 2008-a]), a development process is described in terms of activities, artifacts produced or

consumed by activities, roles played by human actors, elements of guidance provided for human

actors, and tools involved in development. The issue is to identify how such formalisms have to

be extended and/or adapted to collaborative MDE processes.

2. Viewpoint-oriented Process Modelling. To face the scalability issue in the context of complex

systems, separation of concerns has proven to be efficient. The issue is to study how the

existing viewpoint-oriented modelling approaches and particularly our previous work (e.g.

[Marcaillou94], [Nassar05]) could be applied to collaborative MDE development.

3. Process-based assistance. To assist users during the collaborative MDE process enactment,

guidance and behavior aspects should be incorporated into the process structure description.

The issue is to identify such aspects in order to allow computer-assisted enactment.

4. Collaborative process-based traceability. A particular way to assist users during the process

enactment is to provide traces according to users’ viewpoints. Traces might be used for several

purposes such as guidance, process debugging, and reverse engineering. The issue is to define

a traceability policy in the context of collaborative MDE development, and to integrate it into the

process of computer-assisted enactment.

5. Flexible Process definition. A well-known problem in enacting software process models is

that processes are subject to permanent deviations, due to many reasons. The issue is to study

how the existing approaches to process evolution management (e.g. [Kabbaj, 2008], [Almeida,

2010]) could be applied in the context of collaborative MDE development.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 10 of 76

The present deliverable D2.4.1 focuses on issues 1, and part of issue 2. The remaining issues will

be addressed in the deliverable D2.4.2 (Collaborative MDE Process Assistance Definition). In

other words, D2.4.1 focuses only on structural and static aspects of collaborative MDE processes,

while dynamic aspects (related to process enactment) and methodological aspects will be

presented in D2.4.2. Part of issue 2 (methodological aspect) will be treated in D2.4.2 since it is

related to process designer assistance.

The present document aims to depict the Galaxy’s conceptual approach for collaborative MDE

process structure modeling. By MDE process structure, we mean entities that characterize MDE

processes, such as activities, artifacts, roles, models, transformations, etc., and their relationships.

The approach consists in providing a well-defined language in the form of a model, called

CM_SPEM (Collaborative Model-based Software & Systems Process Engineering Metamodel),

that extends the OMG’s standards SPEM 2.0 [OMG, 2008-a] and QVT [OMG, 2008-b] to concepts

related to collaborative MDE development.

1.2 DOCUMENT ORGANIZATION

The remainder of this document is organized into three main sections: section 2 deals with

modeling MDE process structure aspects independent of the collaborative and the view-points

concerns; section 3 focuses on modeling structural aspects of collaborative processes, including

MDE processes. Section 4 deals with structural concepts that are related to viewpoint process

modeling.

2. MDE PROCESS STRUCTRE MODELLING

2.1 INTRODUCTION

MDE development is usually described as an Engineering approach that promotes the use of

models and transformations as primary artifacts throughout the development process. In MDE

development, the main preoccupation of the developers is to design models that capture the

various concepts and relations the system to be built is made of, and to identify model

transformations that lead to the effective construction of the system. So, the finality of MDE

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 11 of 76

development is to describe both the problem and its solution by using models, and by clearly

establishing a methodology to show how to switch from a problem, described by the model of

requirements of the system to be built, to its solution, i.e. the effective construction of the system,

by using models transformations. Therefore, a MDE process can be seen as a set of model

transformations, each transformation consuming source models and producing target models. To

allow computer-based transformations, models should not be informal. They must conform to

precise metamodels or be written in a well-defined language, i.e. a language with a precise syntax

and semantics, that make them machine understandable. Thus, a certain number of

transformations, such as model refactoring, model refinement, or model to code generation, may

be at least partially automated.

The SPEM 2.0 standard describes a process in terms of process activities, work products

consumed and/or produced by activities, roles played by human actors that perform activities, and

guidance elements and tools providing assistance for human actors at enactment time. However,

SPEM 2.0 does not explicitly offer concepts related to MDE development. In the other hand, the

QVT standard provides concepts and constructs for expressing model transformations, but it does

not address the question of process modeling.

The basic approach underlying the definition of CM_SPEM Process Structure metamodel consists

in reusing a subset of SPEM 2.0 and QVT in order to include concepts related to MDE processes.

A model is defined as a specialization of a SPEM work product. Thus, activities may work on

models.

The concept of model transformation is defined as a specialization of SPEM work definition that

has models as input/output parameters. It is also defined as a SPEM work breakdown element.

Thus, model transformations may be nested by SPEM activities.

The concept of Process is considered as a kind of Activity. Similarly, in CM_SPEM, the concept of

MDE process is considered as a kind of Activity, which may contain activities that work on models,

including model transformation, model edition, model refactoring, etc.

2.2 CM_SPEM PROCESS STRUCTURE OVERVIEW

As depicted in Erreur ! Source du renvoi introuvable., the CM_SPEM Process Structure

metamodel merges the packages SPEM 2.0 Core, SPEM 2.0 Process Sructure, and QVT Base,

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 12 of 76

and is organized into five sub-packages:

- CM_SPEM Core

- CM_SPEM Model Structure

- CM_SPEM Transformation Structure

- CM_SPEM Activity Structure

The SPEM 2.0 Core package contains the meta-model classes and abstractions that build the

foundation for structural aspects of processes. It is reused by CM_SPEM Core via the UML 2

package merging mechanism.

The CM_SPEM Model Structure package defines concepts of models and metamodels and their

relationships. It imports concepts from the UML2 Core and SPEM 2.0 Core packages.

The SPEM 2.0 Process Structure package defines the base for all process models. Its core data

structure is a breakdown or decomposition of nested Activities that maintain lists of references to

performing Role classes as well as input and output Work Product classes for each Activity. In

addition, it provides mechanisms for process reuse such as the dynamic binding of process

patterns that allow users to assemble processes with sets of dynamically linked Activities.

The QVT Base package contains a set of basic concepts that structure transformations, their rules,

and their input and output models. The packages QVT Base, SPEM 2.0 Process Structure,

CM_SPEM Core, and CM_SPEM Model Structure are merged into the CM_SPEM Transformation

Structure package in order to extend SPEM work definitions to model transformations’ structural

aspects.

The packages SPEM 2.0 Process Structure, CM_SPEM Core, CM_SPEM Model Structure,

CM_SPEM Transformation Structure are merged into the CM_SPEM Activity Structure package in

order to extend activities’ structural aspects with the concepts of model and model transformation.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 13 of 76

Figure 1 - CM_SPEM Process Structure: sub-packages

2.3 CM_SPEM CORE

This package contains the meta-model classes and abstractions that build the foundation for all

other meta-model packages. It imports the concepts Classifier, and Class from UML2, and merges

the SPEM2.0 Core package.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 14 of 76

Figure 2 - The CM_SPEM Core package

2.3.1 Newly Introduced Concepts

The CM_SPEM Core package extends the SPEM2.0 Core package with the concept of ‘invariant’

associated with a Work Definition, which is defined as a logical set of constraints that must hold

while the Work Definition is being performed.

2.3.2 Extensible Element

Super Class

• Classifier (from Constructs in UML 2 Infrastructure)

Description

Extensible Element is an abstract generalization that represents any class for which it is

possible to assign a Kind to its instances expressing a user-defined qualification.

Association Properties

• kind: Kind. An instance of Extensible Element can be linked to zero or one Kind in which

the Kind instance expresses a specific user-defined qualification for that Extensible Element

instance.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 15 of 76

Semantics

Extensible Element provides the property of relating a Kind class to its sub-classes. Such

Kinds cannot be reused for many different subtypes of Extensible Element and therefore can

only be related to exactly one meta-model class. This is defined as an OCL constraint in

SPEM2.0, named “Applicable MetaClass”.

2.3.3 Kind

Super Class

• Extensible Element (from SPEM2.0 Core)

Description

Kind is an Extensible Element. It instances are used to qualify other Extensible Element instances

with a user-defined type or kind.

Association Properties

• applicableMetaClass: Class. An instance of Kind can only be used for instances of exactly

one Extensible Element subclass or its subclasses. This property specifies which one.

Semantics

As many processes need to define their own refined vocabulary, Kind provides the ability to

express such user-defined qualifications for instances of Extensible Element. Because Kind is

an Extensible Element itself one can define Kinds for the Kind class itself as well. For

example, a subclass of Extensible Elements that typically utilizes Kinds is the meta-model

class Guidance. Typical Guidance kinds would be: White Paper, Guideline, Checklist,

Template, Reports, etc. Because of the Applicable MetaClass constraint, these Kinds can only

be related to instances of the Guidance class as well as instances of any subclasses of

Guidance.

2.3.4 ParameterDirectionKind

Description

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 16 of 76

This enumeration defines for Work Definition Parameter instances whether the parameter

represents an input, output, or input as well as output.

Enumeration Literals

• in: A Work Definition Parameter instance with this direction value represents an input.

• out: A Work Definition Parameter instance with this direction value represents an output.

• inout: A Work Definition Parameter instance with this direction value represents both an

input and an output.

2.3.5 WorkDefinition

Super Class

• Classifier (from Constructs in UML 2 Infrastructure)

Description

Work Definition is an abstract Classifier that generalizes all definitions of work. Work Definition

defines some default associations to Work Definition Parameter and Constraint. Work

Definitions can contain sets of pre-conditions, invariants, and post-conditions defining

constraints that, respectively, need to be valid before the described work can begin, while it is

being performed, or before it can be declared as finished.

Association Properties

• /ownedParameters: WorkDefinitionParameter. Work Definition can define an ordered set of

parameters to specify inputs and outputs. The concrete subclasses of Work Definition need to

define their own subclasses of Work Definition Parameter to add reference to concrete

input/output meta types.

• workDefinitionPerformers: WorkDefinitionPerformer. This composition association specifies

the performers of the work described by the Work Definition.

• precondition: Constraint. This composition association adds an optional pre-condition to a

Work Definition. A pre-condition defines any kind of constraint that must evaluate to true

before the work described by the Work Definition can start.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 17 of 76

• postcondition: Constraint. This composition association adds an optional post-condition to a

Work Definition. A post-condition defines any kind of constraint that must evaluate to true

before the work described by the Work Definition can be declared completed or finished and

which other Work Definitions might depend upon (e.g., for their pre-conditions).

• Invariant: Constraint. This composition association adds an optional invariant to a Work

Definition. An invariant defines any kind of constraint that must hold before the work described

by the Work Definition can start, while it is being performed, and before it can be declared

completed or finished.

Semantics

A Work Definition represents a performer independent definition of work. For example, a Work

Definition could represent work that is being performed by one specific Role (e.g., a Role

performing a specific Activity), by many Roles working in close collaboration (many Roles all

working together on the same Activity), or complex work that is performed throughout the

lifecycle (e.g., a process defining a breakdown structure for organizing larger composite units

of work performed by many Roles working in collaboration).

2.3.6 WorkDefinitionParameter

Super Class

• Classifier (from Constructs in UML 2 Infrastructure)

Description

A Work Definition Parameter is an abstract generalization for Process Elements that represent

parameter for Work Definitions. It is used for declarations of inputs and outputs.

Attributes

• direction: ParameterDirectionKind. This attribute represents the direction kind of the

parameter as specified by the enumeration Parameter Direction Kind.

2.3.7 WorkDefinitionPerformer

Super Class

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 18 of 76

• Classifier (from Constructs in UML 2 Infrastructure)

Description

Work Definition Performer is an abstract Classifier that represents the relationship of a work

performer to a Work Definition. Different specialization of Work Definition will introduce

different kinds of performers. Work Definition Performer is intended to be specialized adding

the association to the concrete performer meta class.

Association Properties

• /linkedWorkDefinition: WorkDefinition This derived union provides access to all the Work

Definitions a Work Definition Performer instance is related to.

2.4 CM_SPEM MODEL STRUCTURE

This package defines concepts of Model, Metamodel, and their main related relationships. It

imports the concept of Named Element from UML2 and the concept of Extensible Element from

the SPE2.0 Core package.

Figure 3 - The CM_SPEM Model Structure package

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 19 of 76

2.4.1 Model

Super Class

• Named Element (from UML2::Core::Basic)

Description

Model defines a description of a System that conforms to a metamodel. It comes in the form of

a non-empty set of packages that contains elements defining the model.

Association Properties

• metamodel: Metamodel. The Metamodel that the Model conforms to.

• modelDefinition: Package (from UML2::Core:Basic). The non-empty set of packages that

contains elements defining the model.

2.4.2 Metamodel

Description

Metamodel is a particular model that defines an abstract language for describing a given

family of models. As a Model, it must conform to a Metamodel, itself eventually, and must have

a non-empty set of packages that contains elements defining it.

2.4.3 ModelRelationship

Super Class

• Extensible Element (from SPEM2.0 Core)

Description

Model Relationship expresses a general relationship among models. Kind class (from Core)

instances shall be used to specify the nature of this relationship.

Association Properties

• source: Model. This association links to the exact one source of the Model Relationship.

• target: Model. This association links to one or more targets of the Model Relationship.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 20 of 76

Semantics

Model relationships can be used to express model-specific kinds of relationships among

Models, such as refinement, traceability, etc.

2.5 CM_SPEM TRANSFORMATION STRUCTURE

This package defines the concept of Transformation as a Work Definition that has Typed Models

as parameters, and Process Performers. It imports the following concepts: Package from UML2,

Work Definition from CM_SPEM Core, Process Performer and Work Definition Parameter from

SPEM2.0 Process Structure. It merges the QVT::QVT Base package and the CM_SPEM Model

Structure package.

Figure 4 - CM_SPEM Transformation Structure package

2.5.1 Newly Introduced Concepts

The CM_SPEM Transformation Structure package extends the QVT::QVT Base package with the

following concepts:

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 21 of 76

- As a Work Definition, a QVT Transformation may have a precondition, an invariant, and a

post-condition.

- As a Work Definition, a QVT Transformation has Process Performers.

- A QVT Transformation is not only associated with models as parameters but also with the

metamodels that these models must conform to.

- Relationships between Typed Models, which are parameters of a QVT Transformation, may

be explicitly defined.

2.5.2 Transformation

Super Class

• WorkDefinition (from CM_SPEM Core)

• WorkBreakdownElement (from CM_SPEM Activity Structure)

Description

Transformation defines how one set of models can be transformed into another. Types of

models are specified by a set of typed model parameters associated with the transformation.

It contains a set of rules that specify how models are to be transformed.

As a Work Definition, a Transformation represents a piece of work within a model-based

development process. It has Work Definition Parameters (which correspond to Typed Models),

Work Definition Performers, and may have precondition, invariant, and postcondition.

As a Work Breakdown Element, a Transformation may be nested by Activties of a model-

based development process, and may have Work Sequence links with other Work Breakdown

Elements.

Association properties

• performers: ProcessPerformer (from SPEM2.0::Process Structure). This association

specifies the performers of the work described by the Transformation. It subsets the

workDefinitionPerformers association inherited from Work Definition.

• parameters: TypedModel (from QVT::QVT Base). This composition association specifies an

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 22 of 76

ordered set of typed model parameters for the Transformation.

• /metamodels: Metamodel (from CM_SPEM Model Structure). This composition association

specifies the set of Metamodels used by the Transformation, which is the union of Metamodels

that type the Transformation’s parameters.

• subTransformations: Transformation. This association may be used to decompose the

Transformation into a set of sub-Transformations.

• parentTransformation: Transformation. This is the opposite of the association

subTransformations. It indicates the parent Transformation, if any.

2.5.3 TypedModel

Super Class

• Work Definition Parameter (from SPEM2.0::Process Structure)

• Model (from CM_SPEM Model Structure)

Description

Typed Model specifies a named, typed parameter of a transformation, which is a model that

conforms to a Metamodel.

Association properties

• parameterType: Metamodel (from CM_SPEM Model Structure) {redefines metamodel (from

CM_SPEM Model Structure)}. This association specifies Metamodel that the TypedModel

conforms to.

usedPackage: Package (from UML2::Core::Basic) {redefines usedPackage (from QVT::QVT

Base)}. The non-empty set of metamodel packages that specify the types for the model

elements of the Typed Model.

2.5.4 Metamodel

Description

Metamodel specifies the type of one or several model parameters of a Transformation.

Association Properties

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 23 of 76

• metamodelDefinition: Package (from UML2::Core::Basic) {redefines modelDefinition (from

CM_SPEM Model Structure). This association specifies thee non-empty set of packages

that contains elements that define the metamodel.

• typedParameters: TypedModel. This association specifies the Typed Models that conform

to the Metamodel.

Attributes

• /direction: MetamodelDirectionKind. This attribute represents the direction kind of the

parameter as specified by the enumeration Parameter Direction Kind. The value of this

attribute is derived from the value of the attribute direction of Models associated with the

Metamodel through the association property ‘typed parameters’. If all these models have

their attribute ‘direction’ set to ‘in’, then the attribute ‘direction’ of the Metamodel is set to

‘source’. If all the models their attribute ‘direction’ set to ‘out’, then the attribute ‘direction’ of

the Metamodel is set to ‘target’. Otherwise, the attribute ‘direction’ of the Metamodel is set

to ‘source-target’.

2.5.5 Metamodel Direction Kind

Description

This enumeration defines for a Metamodel used by a Transformation whether it used as a

source metamodel, a target metamodel, or both.

Enumeration Literals

• source: A Metamodel with this direction value indicates that it is used as a source

metamodel.

• out: A Metamodel with this direction value indicates that it is used as a target metamodel.

• inout: A Metamodel with this direction value indicates that it is used both as a source

metamodel and target metamodel.

2.6 CM_SPEM ACTIVITY STRUCTURE

As it is the case in SPEM2.0, this package contains the basic structural elements for defining

processes in terms of development activities. Its core data structure is a breakdown or

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 24 of 76

decomposition of nested activities that maintain, for each activity, references to breakdown

elements such as performing roles, input and output work products, and milestones. This

breakdown structure mechanism is defined independent of the concrete lifecycle models the

process engineer wants to express with them. In other words, the meta-model is able to represent

different types of processes, such as waterfall processes as well as iterative or incremental

process models, by modeling them all as breakdown structures, but applying different structural

relationships and descriptive attributes expressing their lifecycle specifics.

The CM_SPEM Activity Structure package imports the CM_SPEM Core package and merges the

following packages: SPEM2.0 Process Structure, CM_SPEM Model Structure, and Transformation

Structure.

Figure 5 - The CM_SPEM Activity Structure package

2.6.1 Newly Introduced Concepts

The CM_SPEM Activity Structure package extends the SPEM2.0 Process Structure, CM_SPEM

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 25 of 76

Model Structure, and Transformation Structure packages with the following abilities:

- As Work Breakdown Element, QVT Transformations may have precedence relationships

(Work Sequences).

- As BreakdownElements, QVT Transformations may be nested by Activities.

- As WorkProductUses, Models may be Process Parameters for Activities.

The concept of MDE Process is considered as special kind of Activity that may contain sub-

activities working on Models and QVT Transformations.

2.6.2 Activity

Super Class

• Work Definition (from Core)

• Work Breakdown Element (from SPEM2.0 Process Structure)

Description

Activity is a Work Breakdown Element and Work Definition that defines basic units of work

within a process. Activity supports the nesting and logical grouping of related Breakdown

Elements forming breakdown structures.

Association Properties

• nestedBreakdownElement: BreakdownElement. This association represents breakdown

structure nesting. It defines an n-level hierarchy of Activities grouping together other

Breakdown Elements such as other Activities, Milestones, etc.

• parameters: ProcessParameter. This composition association specifies an ordered set of

ProcessParameters for the Activity. The association property subsets the ownedParameters

association inherited from Work Definition.

• performers: ProcessPerformer (from SPEM2.0::Process Structure). This association

specifies the performers of the work described by the Activity. It subsets the

workDefinitionPerformers association inherited from Work Definition.

Semantics

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 26 of 76

Activity is a concrete Work Definition that represents a general unit of work assignable to

specific performers represented by Role Use. An Activity can rely on inputs and produce

outputs represented by Work Product Uses. Thanks to the association property

nestedBreakdownElement, Activity also represents a grouping element for other Breakdown

Elements such as Activities (or sub-activities), Milestones, etc.

2.6.3 Breakdown Element

Description

Breakdown Element is an abstract generalization for any element that is part of a breakdown

structure. Any of its concrete subclasses can be ‘placed inside’ an Activity (via the nested

Breakdown Element association) to become part of a breakdown of Activities as well as the

Activities namespace. As Activities are Breakdown Elements themselves and therefore can be

nested inside other activities, an n-level breakdown structure is defined by n nested Activities.

2.6.4 Work Breakdown Element

Super Class

• Breakdown Element (from SPEM2.0 Process Structure)

Description

Work Breakdown Element is a special Breakdown Element that provides specific properties for

Breakdown Elements that represent work. The properties are specific to breakdown structures

and do not apply to all Work Definition subclasses.

Association Properties

• linkToPredecessor: WorkSequence. This association links a Work Breakdown Element to

its predecessor. Every Work Breakdown Element can have predecessor information

associated to it. This predecessor information is stored in instances of the class Work

Sequence that defines the kind of predecessor another Work Breakdown Element

represents for another.

• linkToSuccessor: WorkSequence. This association links a Work Breakdown Element to its

successor. Every Work Breakdown Element can have successor information associated to

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 27 of 76

it. This successor information is stored in instances of the class Work Sequence that

defines the kind of successor another Work Breakdown Element represents for another.

Semantics

Work Breakdown Element represents a work-specific breakdown element to be used in a work

breakdown structure.

2.6.5 Work Sequence

Super Class

• Breakdown Element (from SPEM2.0 Process Structure)

Description

Work Sequence is a Breakdown Element that represents a relationship between two Work

Breakdown Elements in which one Work Breakdown Elements depends on the start or finish

of another Work Breakdown Elements in order to begin or end.

Attributes

• linkKind: WorkSequenceKind. This attribute expresses the type of the Work Sequence

relationship by assigning a value from the Work Sequence Kind enumeration.

Association Properties

• successor: WorkBreakdownElement. This association links a Work Breakdown Element to

its successor. Every Work Breakdown Element can have successor information associated

to it. This successor information is stored in instances of the class Work Sequence that

defines the kind of successor another Work Breakdown Element represents for another.

• predecessor: WorkBreakdownElement. This association links a Work Breakdown Element

to its predecessor. Every Work Breakdown Element can have predecessor information

associated to it. This predecessor information is stored in instances of the class Work

Sequence that defines the kind of predecessor another Work Breakdown Element

represents for another.

Semantics

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 28 of 76

The Work Sequence class defines predecessor and successor relations among Work

Breakdown Elements. This information is in particular critical for use of the process in planning

applications.

2.6.6 Work Sequence Kind

Description

Work Sequence represents a relationship between two Work Breakdown Elements in which

one Work Breakdown Element (referred to as (B) below) depends on the start or finish of

another Work Breakdown Element (referred to as (A) below) in order to begin or end. This

enumeration defines the different kinds of Work Sequence relationships.

Enumeration Literals

• finishToStart Work. Breakdown Element (B) cannot start until Work Breakdown Element (A)

finishes.

• finishToFinish. Breakdown Element (B) cannot finish until Work Breakdown Element (A)

finishes.

• startToStart. Breakdown Element (B) cannot start until Work Breakdown Element (A) starts.

• startToFinish. Breakdown Element (B) cannot finish until Work Breakdown Element (A)

starts.

2.6.7 Work Product Use

Super Class

• Breakdown Element (from SPEM2.0 Process Structure)

Description

Work Product Use is a special Breakdown Element that either represents an input and/or

output type for an Activity, or a general participant of the Activity. If it is an input/output, then

the Work Product Use needs to be related to the Activity via the Process Parameter class. If it

is a participant, then the Work Product Use is stored in the nestedBreakdownElement

composition of the Activity and might be used by one of the sub-activities as an input/output

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 29 of 76

and/or be related to a Role Use via a Process Responsibility Assignment. Work Product Use

instances are only valid within the context of an Activity and not to be reused across activities.

Semantics

A Work Product Use represents an activity-specific occurrence of a Work Product input/output

type or an Activity participant. A Work Product Use instance is an activity-specific object and

not a general reusable definition of a work product. A Work Product Use represents the

occurrence of a real Work Product in the context of an activity. A Work Product Use participant

stored with an Activity can only be accessed and reused by the Activity’s sub-Activities and not

by any parent or sibling Activities in the Activity breakdown structure. This scoping of Work

Product Use in the local namespace of Activities allows the modeling of different Responsibility

Assignments for every Activity.

2.6.8 Model

Super Class

• Work Product Use

Description

Model is a special kind of Work Product Use, used as a parameter of an Activity.

Semantics

The use of Models as parameters of Activities allows for definition of works on models that are

not model transformations, such as model edition for example. It also allows for making links

between Activities and model Transformations, by sharing Models.

2.6.9 Work Product Use Relationship

Super Class

• Extensible Element (from SPEM2.0 Core)

Description

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 30 of 76

Work Product Use Relationship expresses a general relationship among work products. Kind

class (from Core) instances shall be used to specify the nature of this relationship.

Association Properties

• source: Work Product Use. This association links to the exact one source of the Work

Product Use Relationship.

• target: Work Product Use. This association links to one or more targets of the Work Product

Use Relationship.

Semantics

The Work Product Use Relationship can be used to express different kinds of relationships

among Work Products Uses. Typical Kinds are ‘composition’ expressing that a work product

use instance is part of another work product instance, ‘aggregation’ indicating that a Work

Product Use is used with another Work Product Use, and ‘impact dependency’ indicating that

a work product use impacts another work product use.

2.6.10 Process Parameter

Super Class

• Work Definition Parameter (from SPEM2.0::Process Structure)

Description

Process Parameter defines input and output meta-types to be Work Product Uses.

Association Properties

• parameterType: WorkProductUse. This association links zero or one Work Product Use

instances to a parameter. Processes could leave the type specification open and not

specify a concrete Work Product Use.

2.6.11 Milestone

Super Class

• Work Breakdown Element (from SPEM2.0 Process Structure)

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 31 of 76

Description

Milestone is a Work Breakdown Element that represents a significant event for a development

project.

Association Properties

• requiredResults: WorkProductUse. This association links the Work Product Uses instances

to a Milestone instance that need to be produced for that Milestone.

Semantics

A Milestone describes a significant event in a development project, such as a major decision,

completion of a deliverable, or meeting of a major dependency (like completion of a project

phase). Because Milestone is commonly used to refer to both the event itself and the point in

time at which the event is scheduled to happen, it is modeled as a Work Breakdown Element

(i.e., it appears as part of a work breakdown structure and can have predecessors and

successors).

2.6.12 Role Use

Super Class

• Breakdown Element (from SPEM2.0 Process Structure)

Description

Role Use is a special Breakdown Element that either represents a performer of an Activity or a

participant of the Activity. If it is a performer, the Role Use and Activity need to be related via a

Process Performer. If it is a participant, then the Role Use is simply stored in the

nestedBreakdownElement composition of the Activity and might be used by one of the sub-

activities as a performer and/or a Process Responsibility Assignment. Role Uses are only valid

within the context of an Activity. They are not to be reused across activities.

Semantics

A Role Use represents an activity-specific occurrence of an activity performer or participant. A

Role Use is an activity-specific object and not a general reusable definition of an

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 32 of 76

organizational role. A Role Use represents the occurrence of a real person performing activity-

specific work and having activity-specific responsibilities. A Role Use participant stored with an

Activity can be only accessed and reused by the Activity’s sub-Activities and not by any parent

or sibling Activities in the Activity breakdown structure. This scoping of Role Use in the local

namespace of Activities allows different Performers as well as different Responsibility

Assignments for every Activity. In other words, Role Use instances with the same name, but

different responsibilities and performing different work, can be created in different Activities.

2.6.13 Process Performer

Super Class

• Breakdown Element (from SPEM2.0 Process Structure)

• Work Definition Performer (from CM_SPEM Core)

Description

Process Performer is a Breakdown Element and Work Definition Performer that represents a

relationship between Activity instances and Role Use instances. An instance of Process

Performer links one or more Role Use instances to one Activity.

Association Properties

• linkedActivity: Activity. A Process Performer links to zero or one Activity. The linked Activity

property subsets the linked Work Definition property from the Work Definition Performer

defined in Core.

• linkedRoleUse: RoleUse. A Process Performer links to one or more Role Use.

Semantics

The Process Performer links Role Uses to Activities, indicating that these Role Use instances

participate in the work defined by the activity in one or another way. The kind of involvement of

the Role Use in the Activity needs to be defined by Kind (Section 8.2) class instances that

qualify the Process Performer instances. Typical examples for Kinds of Process Performers

would be Primary Performer, Additional Performer, Assisting Performer, Supervising

Performer, Consulted Performer, etc. The popular RACI-VS diagram defines another set of

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 33 of 76

commonly used Kinds for the Process Performer: Responsible, Accountable, Consulted,

Informed, Verifies, and Signs.

2.6.14 Process Responsibility Assignment

Super Class

• Extensible Element (from SPEM2.0 Core)

Description

Process Responsibility Assignment is a Breakdown Element that represents a relationship

between instances of Role Use and Work Product Use. An instance of the Process

Responsibility Assignment links one or more Role Use instances to exactly one Work Product

Use.

Kind class (from Core) instances shall be used to specify the nature of this responsibility

assignment.

Association Properties

• linkedRoleUse: RoleUse. A Process Responsibility Assignment links to one or more Role

Use.

• linkedWorkProductUse: WorkProductUse. A Process Responsibility Assignment links to

exactly one Work Product Use.

Semantics

The Process Responsibility Assignment links Role Uses to Work Product Uses indicating that

the Role Use has a responsibility relationship with the Work Product Use. The Process

Performer and Process Responsibility represent two quite different sets of information as a

Role Use can be involved in an Activity that modifies a work product without being responsible

for the Work Product itself and vice versa (i.e. a Role Use can be responsible for a Work

Product Use without participating in all the Activities that modify it).

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 34 of 76

2.7 EXAMPLE OF MDE PROCESS STRUCTURE DESCRIPTION WITH CM_SPEM

This section aims to illustrate the use of CM_SPEM Process concepts through an MDE process

example: the UWE (UML-based Web Engineering) process (described in details in [Koch 2006],

and [Kroiß 2008]). First, we give a summarized overview of UWE. Then, we show how CM_SPEM

concepts may be used for describing the structure of UWE.

2.7.1 UWE Process Overview

The objective of the UWE process is to give to web developers a systematic and semi-automatic

support of web systems development based on models and their transformations.

The process covers the whole development life cycle of web systems from the requirements

specification to code generation. It is a model-driven development process following the MDA

principles and using the OMG’s standards. It consists of a set models and model transformations,

specified by metamodels and model transformation languages.

The process starts with the definition of a requirements model that is computational independent

(CIM) business model. Two sets of platform independent design models (PIM) are derived from

these requirements: functional models which represent the different concerns of the Web system

(content, navigation, business logic, presentation, and adaptation); and an architecture model

which represents the architectural features of the Web system. Functional models are afterwards

integrated mainly for the purpose of verification into a big picture model. A merge of this big picture

model with the architectural models results in an integrated model covering functional and

architectural aspects. Finally, platform specific models (PSM) are derived from the integrated

model from which programming code can be generated.

2.7.2 Describing the UWE process with the CM_SPEM Process Structure concepts

Figure 6 shows the set of graphical representations used for describing the structure of the UWE

process.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 35 of 76

CM_SPEM Process Structure concepts Icon Comment

Activity (from CM_SPEM::Activity Structure)

Reused from
SPEM2.0

RoleUse (from CM_SPEM::Activity Structure)

Reused from
SPEM2.0

WorkProductUse (from CM_SPEM::Activity Structure)

Reused from
SPEM2.0

Transformation (from CM_SPEM::Transformation Structure) New CM_SPEM Icon

TypedModel (from CM_SPEM::Transformation Structure) New CM_SPEM Icon

Metamodel (from CM_SPEM::Model Structure)

New CM_SPEM Icon

Figure 6 - Graphical representation of CM_SPEM Process Structure concepts

Erreur ! Source du renvoi introuvable. shows a description of the UWE process, as an Activity

that represents the whole process. The UWE process takes as input the Work Product Use “Web

System Requirements” (which may be a text file, for example), and produces as outputs the Work

Product Uses “JEE Source Code”, and “.NET Source Code”. The performers Involved in the

process play roles defined by the Role Uses “Web Designer”, “JEE Developer”, and “.NET

Developer”.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 36 of 76

Figure 7 - The whole UWE Process as a single Activity

 shows the Breakdown Elements nested by the UWE Process, which are: the Work Product Uses

“Web System Requirements”, “JEE Source Code”, “.NET Source Code”; the Role Uses “Web

Designer”, “JEE Developer”, and “.NET Developer”; the Activities “Create Requirements Model”,

“Generate JEE Source Code”, and “Generate .NET Source Code”; the Transformations

“Requirements To Functional”, “Requirements To Architecture”, “Functional To Big Picture”,

“Architecture Integration”, “Integration To JEE”, and “Integration To .NET”; the Models

“Requirements Model”, “Functional Models”, “Architecture Model”, “Big Picture Model”, “Integration

Model”, “Model For JEE”, and “Model For .NET”.

Figure 9 shows the parameters of Activities and Transformations.

Figure 10 shows their precedence relationships (depicted by the «finish to start» associations), and

their associated performers.

As shown by Figure 11, the “Requirements To Functional” transformation has six sub-

transformations: “Requirements To Content”, “Content To Navigation”, “Requirements To

Navigation”, “Navigation Refinement”, “Navigation To Presentation”, and “Style Adjustment”.

Figure 7 shows the precedence links and model parameters of these sub-transformations.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 37 of 76

Finally, figure 8 shows the relationships between the models and metamodels involved in the

process. The “Functional Models” is a set composed of four models: the “Content Model”, the

“Navigation Model”, the “Presentation Model”, and the “Style Guide Model”. Conformity

relationships are depicted as associations stereotyped with «conform to».

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 38 of 76

UWE	 Process

Web	 System	 Requirements

.NET	 Source	 Code

JEE	 Source	 Code

JEE	 Developer

.NET	 Developer

Web	 Designer

Create Requirements Model

Generate JEE	 Source	 Code

Requirements To	 Functional

Requirements To	 Architecture

Functional To	 Big Picture

Architecture	 Integration

Generate .NET	 Source	 Code

Integration To	 JEE

Integration To	 .NET

Requirements	 Model

Functional	 Models

Architecture	 Models

Big	 Picture	 Model

Integration	 Model

Model	 For	 JEE

Model	 For	 .NET

Figure 8 - UWE’s Breakdown Elements

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 39 of 76

Create Requirements
Model

Web	 System	 Requirements

«in»

«out»

«out»

RequirementsModel

Requirements To	
Functional

Requirements To	
Architecture

«in»

Functional	 To	 Big	
Picture

Functional Models Architecture	 Model

Big Picture	 Model

Architecture	
Integration

«in»

«in»

Integration Model

«out»

«in»

«out»

«in»

«out»

«in»

Integration	 To	 JEE

Model	 For	 JEE

«out»

«in»

Integration	 To	 .NET

Model	 For	 .NET

«out»
«in»

Generate JEE	 Source	
Code	

«in»

Generate .NET	
Source	 Code	

«in»

.NET	 Source	 Code

JEE	 Source	 Code

«out»

«out»

Figure 9 - Parameters of UWE's Activities and Transformations

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 40 of 76

«finish	 to	 start»

Create Requirements
Model

Requirements To	
Functional

Requirements To	
Architecture

Functional	 To	 Big	
Picture

Architecture	
Integration

Integration	 To	 JEE

«finish	 to	 start»

Integration	 To	 .NET

Generate JEE	
Source	 Code	

Generate .NET	
Source	 Code	

«finish	 to	 start»

«finish	 to	 start»

«finish	 to	 start» «finish	 to	 start»

«finish	 to	 start»«finish	 to	 start»

Web	 Designer

.NET	 Developer

JEE	 Developer

«performer»

Web	 Designer

«performer»

«performer»

«performer»

«performer»

«performer»

«performer»

«performer»

«performer»

Figure 10 - Precedence links and Performers of UWE's Activities and Transformations

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 41 of 76

Requirements To	
Functional

Requirements To	
Content

Content To	
Navigation

Navigation	
Refinement

Requirements	 To	
Navigation

Navigation	 To	
Presentation

Style	 Adjustment	

Figure 11 - Sub-transformations of the “Requirements model to functional models” transformation

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 42 of 76

RequirementsModel
Requirements To	 Content

Content To	 Navigation

Navigation	 Refinement

Navigation Model

Requirements	 To	 Navigation

«in» «out»
Content	 Model

Navigation	 To	 Presentation PresentationModel

Style Guide	 Model

«in»«out»

«in»
«in-‐out»

Style	 Adjustment	

«in-‐out»

«in-‐out» «out»

«in»«out»

«finish	 to	 start»

«finish	 to	 start»

«finish	 to	 start»

«finish	 to	 start»

«finish	 to	 start»

Figure 12 - Precedence links and Parameters of the sub-transformations of the “Requirements model

to functional models” transformation

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 43 of 76

Requirements
Model

Architecture
Model

WebRe	
Metamodel	

WebSA
Metamodel	

«conformto»«conformto»

Content	 Model

Functional
Models

Navigation Model

PresentationModel

Style Guide	 Model

Presentation	
Metamodel	 Content	

Metamodel	

Navigation	
Metamodel	

«conformto»

«conformto»

«conformto»

Figure 13 - UWE's models and metamodels relationships

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 44 of 76

RequirementsModel
Requirements To	 Content

Content To	 Navigation

Navigation	 Refinement

Navigation Model

Requirements	 To	 Navigation

«in» «out»
Content	 Model

Navigation	 To	 Presentation PresentationModel

Style Guide	 Model

«in»«out»

«in»
«in-‐out»

Style	 Adjustment	

«in-‐out»

«in-‐out» «out»

«in»«out»

«finish	 to	 start»

«finish	 to	 start»

«finish	 to	 start»

«finish	 to	 start»

«finish	 to	 start»

Figure 14 – Precedence links and Parameters of the sub-transformations of the “Requirements model

to functional models” transformation

2.8 CONCLUSION

The CM_SPEM Process Structure metamodel reuses a subset of SPEM 2.0 and QVT in order to

include concepts related to MDE processes. A model is defined as a specialization of a SPEM

work product, thus activities working on models may be described. A model transformation is

defined as a specialization of SPEM work definition that has models as input/output parameters,

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 45 of 76

and also as a SPEM work breakdown element. Thus, model transformations may be nested by

SPEM activities. As in SPEM2.0, an MDE process is considered as a kind of Activity, which may

contain model transformations, and activities that work on models or other kind of work products.

All these concepts have been illustrated through the example of the UWE MDE process.

3. COLLABORATIVE MDE PROCESS MODELLING
3.1 INTRODUCTION

The goal of the current section is the definition of a formalism suited for describing collaboration.

The approach taken is to reuse the Software & Systems Process Engineering Metamodel (SPEM),

and extend its collaboration description facilities.

The extensions proposed are rooted in a fundamental realization: a considerable amount of

relations relevant to collaboration can be described only at the project level.

Indeed, most conventional process metamodels (including SPEM) allow defining a process via the

activities carried out inside the process. Activities are performed by roles and manipulate products.

The defined process then can be enacted in various ways for different projects.

In the context of a specific project, where collaboration occurs, there may be:

• Different actors (people) carrying out the same task. Usually, this is because the same task

applies to a large artifact, which can be decomposed into parts assigned to different people.

For example, when writing unit tests, each project participant can work on a set of system

components. Then, creating test cases for that particular set of component can be

considered as an actor specific task (in contrast to the process task of creating all unit

tests).

• Different physical artifacts in different workspaces which may stand for the same product.

This happens for example when each participant has his own working copy of a shared

product (each copy is thus an actor specific artifact). In those cases, some guidelines are

needed to designate the reference copy, and how the other copies contribute to it.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 46 of 76

However, the relations involved in the above situations cannot be described in conventional

process models like SPEM, as the concepts needed (actors, actor specific tasks, actor specific

artifacts) are not represented in these process models, but appear only when enacting processes.

To allow the description of such relations, we chose to include the missing concepts in the

metamodel. This does mean that part of the process model will be constructed only after some

pieces of information are available (like the people working together on a shared product). But it is

still useful to do so, as being explicit about these relations makes some tool assistance possible.

For example, a tool can automatically inform the relevant people when some modification is made

to a physical artifact.

The integration of afore mentioned concepts make possible the description of the following

relations:

• Between actors manipulating the same product or playing the same role

• Between actor specific tasks carried out in the same (process) task or on the same product

• Between actor specific artifacts that represent the same product or are manipulated in the

same (process) task

• Between actor specific artifacts and actor specific tasks, actor specific tasks and actors,

actor specific artifacts and actors

Section 3.2 presents an illustrating example of collaboration. Section 3.3 presents the

Collaboration Structure package, and section 3.4 models the example using the concepts defined

in section 3.3.

3.2 EXAMPLE

We illustrate the additional collaboration description capabilities granted by the new concepts on a

set of situations in the same project. This section gives a general overview of the project and the

situations, and section 3.4 models the various situations with CM_SPEM.

We consider a development project, with the following participants: Alice, Arthur, Bob, Mike, and

Tracy. These actors are the only elements implicitly reused across the situations (those situations

have no other implicit link between them otherwise).

3.2.1 Situation 1: The same task carried out on copies of the same artifact

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 47 of 76

For the task “Elaborate Use Case Model”, four different use cases (UC1, UC2, UC3, and UC4)

have been identified by previous tasks. The output of the task is the product “Use Case Model”,

which should contain all the four use cases. Alice is asked to elaborate UC1, Bob works on UC2,

and Mike works on UC3 and UC4. Alice has the responsibility of assembling those contributions.

The input of the task is a requirement document, which is not shown for simplicity, as it is not

modified in the task, and is only used as documentation.

In their respective workspaces, each of Alice, Bob, and Mike works on a full copy of the use case

model. In other words, at a certain frequency left at the discretion of the designers, Alice (who acts

as an integrator) grabs everyone’s contribution, integrates it with the model in her workspace, and

then send the whole (updated) model to the other developers. Each developer then continues his

work (containing, as much as possible, his modifications to the use case assigned to his/her) from

the latest version made available by Alice. At the end of the task, each workspace should have the

same use case model, which corresponds to the output of the task.

3.2.2 Situation 2: The same task carried out on distinct artifacts (variation of
situation 1)

We start from the same setup as situation 1. But this time, the artifacts manipulated by Bob (UC2),

and Mike (UC3 and UC4) are only part of the final “Use Case Model”. In other words, at no

moment does Bob have in his workspace UC1, UC3, nor UC4 (idem. for Mike). Alice still acts as

integrator, and the artifact in her workspace is the whole model.

This setup reduced the chances that someone (other than Alice the integrator) accidentally

modifies a use case he is not responsible for. The case arises when neither Bob, nor Mike needs

the other use cases to give context to his own work or needs to worry about the consistency of his

use case with the other use cases (when extending or including another use case for example).

Note that in this situation, the artifacts manipulated by Bob and Mike can be viewed as temporary

artifacts, and need not be preserved at the end of the activity. They have already been integrated

in the artifact manipulated by Alice, which represents the output of the task, the whole “Use Case

Model”. In a real world scenario, this can be accomplished using the branching feature of a version

control system.

3.2.3 Situation 3: A task carried out by people playing different roles

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 48 of 76

Bob is writing unit tests (the corresponding product is “Unit tests”) for a component that implements

functionality needed by the above use cases UC1 and UC2. Tracy will do a code review on the

tests written by Bob. The code review is done periodically, before each product release. When

reviewing the code, Tracy modifies the artifacts in her workspace, and when done, notifies Bob so

he can pull the changes into his workspace, and base further work on that version.

3.3 THE COLLABORATION STRUCTURE PACKAGE

3.3.1 General overview

The collaboration aspects of CM_SPEM are described in the CM_SPEM::CollaborationStructure

package. The main concepts this package borrows from SPEM are RoleUse (from

SPEM::ProcessStructure via CM_SPEM::ProcessStructure), ProductUse (from

SPEM::ProcessStructure via CM_SPEM::ProcessStructure) and TaskUse (from

SPEM::ProcessWithMethods). The main concepts introduced are Actor, ActorSpecificTask, and

ActorSpecificArtifact. The other concepts are mostly relations between the new concepts, or

between concepts form SPEM and the newly defined concepts.

Figure 15 shows which SPEM packages are reused by CM_SPEM::CollaborationStructure, and

Figure 16 is a high level overview of the content of the CM_SPEM::CollaborationStructure

package.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 49 of 76

Figure 15 - SPEM Packages merged by the CM_SPEM::CollaborationStructure package

 Figure 16 - Overview of the CM_SPEM::CollaborationStructure package

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 50 of 76

3.3.2 Newly introduced concepts

3.3.2.1 Actor

Super Class

ExtensibleElement (SPEM::Core)

Description

Actor is an ExtensibleElement that represents a specific human participant in a project.

Attributes

Association properties

• associatedRoleUse: RoleUse. This association represents a resource affectation, that is,

the affectation of an actor to a defined RoleUse. The set of all associatedRoleUse for a

given actor gives an overview of where he/she contributes in a project.

Semantics

An Actor is a specific human affected to a RoleUse when a project is enacted. An Actor

unambiguously identifies a single person in a project, and as such, is scoped to the whole

process model.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 51 of 76

Figure 17 - Actor and linked concepts in the CM_SPEM::CollaborationStructure package

3.3.2.2 ActorSpecificTask

Super Class

ExtensibleElement (SPEM::Core)

WorkBreakDownElement (SPEM::ProcessStructure)

Description

ActorSpecificTask represents the work done by a single actor in the context of a specific

TaskUse.

Attributes

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 52 of 76

Association properties

• associatedTaskUse: TaskUse. This association represents the contribution of an

ActorSpecificTask to a TaskUse. It means the ActorSpecificTask is part of the work

required for the associated TaskUse.

Semantics

An ActorSpecificTask is a unit of work done by a specific actor, towards the execution of a

TaskUse. For example, when the steps required by a TaskUse need to be repeated for three

different components, and when each component is assigned to a different Actor, three

different ActorSpecificTask will be created, each for one Actor manipulating a component.

An ActorSpecificTask is scoped to the TaskUse it contributes to.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 53 of 76

Figure 18 - ActorSpecificTask and linked concepts in the CM_SPEM::CollaborationStructure package

3.3.2.3 ActorSpecificArtifact

Super Class

ExtensibleElement (SPEM::Core)

Description

ActorSpecificArtifact represents a copy of a WorkProductUse in an actor’s workspace.

Attributes

• isPartialCopy: Boolean = false. When set to true, this attribute indicates that the

ActorSpecificArtifact is only a partial copy of the corresponding WorkProductUse. This is

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 54 of 76

handy when a WorkProductUse has sufficiently autonomous part, so as to allow different

persons to work relatively independently on each part. Each part is then an

ActorSpecificArtifact with isPartialCopy is set to true. There is an implicit composition step

(and an eventual prior decomposition step) where the various parts are brought together, to

form an ActorSpecificArtifact which is a full representation of the WorkProductUse.

Association properties

• associatedWorkProductUse: WorkProductUse. This association represents the

representation of a WorkProductUse by an ActorSpecificArtifact. It means that the

ActorSpecificArtifact is one of the copies of the associated WorkProductUse.

Semantics

An ActorSpecificArtifact is an occurrence of a WorkProductUse, in the personal workspace of

a specific actor. This is the personal copy of the actor, and is manipulated only by him/her. An

ActorSpecificArtifact is scoped to the WorkProductUse it represents.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 55 of 76

Figure 19 - ActorSpecificArtifact and linked concepts in the CM_SPEM::CollaborationStructure
package

3.3.2.4 ActorRelationship

Super Class

BreakdownElement (SPEM::ProcessStructure)

ExtensibleElement (SPEM::Core)

Description

Actor Relationship represents a special link between two actors (Figure 17).

Attributes

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 56 of 76

Association properties

• firstActor: Actor. The first Actor involved in the relation.

• secondActor: Actor. The second Actor involved in the relation.

Semantics

The kind of relationships between the two actors is specified by associating a subclass of

ActorRelationshipKind (see section 3.3.4.1) to the instance of ActorRelationship.

3.3.2.5 ActorSpecificTaskRelationship

Super Class

BreakdownElement (SPEM::ProcessStructure)

ExtensibleElement (SPEM::Core)

Description

ActorSpecificTaskRelationship represents a special link between two tasks, in the context of

the TaskUse they contribute to (Figure 18).

Attributes

Association properties

• firstActorSpecificTask: ActorSpecificTask. The first ActorSpecificTask involved in the

relation.

• secondActorSpecificTask: ActorSpecificTask. The second ActorSpecificTask involved in the

relation.

Semantics

The kind of relationships between the two actor specific tasks is specified by associating a

subclass of ActorSpecificTaskRelationshipKind (see section 3.3.4.2) to the instance of

ActorSpecificTaskRelationship.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 57 of 76

3.3.2.6 ActorSpecificArtifactRelationship

Super Class

BreakdownElement (SPEM::ProcessStructure)

ExtensibleElement (SPEM::Core)

Description

ActorSpecificArtifactRelationship is a special link between two ActorSpecificArtifacts, in the

context of the WorkProductUse they represent (Figure 19).

Attributes

Association properties

• firstActorSpecificArtifact: ActorSpecificArtifact. The first ActorSpecificArtifact involved in the

relation.

• secondActorSpecificArtifact: ActorSpecificArtifact. The second ActorSpecificArtifact

involved in the relation.

Semantics

The kind of relationships between the two actor specific artifacts is specified by associating a

subclass of ActorSpecificArtifactRelationshipKind (see section 3.3.4.3) to the instance of

ActorSpecificArtifactRelationship.

It should be noted that this relationship should only be used for relation specific to two

instances of ActorSpecificArtifact. If such relation is applicable to any couple of

ActorSpecificArtifact created from the related couple of WorkProductUse, then it is better to

use a WorkProductUseRelationship (SPEM::ProcessStructure), a

WorkProductDefinitionRelationship (SPEM::MethodContent), or a WorkSequence

(SPEM::ProcessStructure) instead.

3.3.2.7 TaskAssignment

Super Class

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 58 of 76

BreakdownElement (SPEM::ProcessStructure)

ExtensibleElement (SPEM::Core)

Description

TaskAssignment represents a relationship between an ActorSpecificTask and the Actor that

carries it out.

Attributes

Association properties

• linkedActor: Actor. The Actor a task is being assigned to.

• linkedActorSpecificTask: ActorSpecificTask. The task being assigned to an actor.

Semantics

A TaskAssignment links an ActorSpecificTask to the Actor assigned to it. This adds a useful

precision when a TaskUse instance corresponds to more than one ActorSpecificTask

instances. Even when a TaskUse corresponds to only one ActorSpecificTask, the relationship

TaskAssignment adds a precision about the Actor assigned to the ActorSpecificTask (i.e. to

the TaskUse), which cannot not be specified with a WorkDefinitionPerformer

(SPEM::MethodContent) or a ProcessPerformer (SPEM::ProcessStructure).

When a TaskUse has only one ActorSpecificTask, and a RoleUse is affected to only one

Actor, and a ProcessPerformer already connects the TaskUse and the RoleUse, then a

TaskAssignment relation between the ActorSpecificTask and the Actor is a direct

consequence, and may be omitted for brevity’s sake. This holds when the ProcessPerformer is

replaced by a Performer.

Constraints

• Whenever a TaskAssignment links an Actor and an ActorSpecificTask, the corresponding

TaskUse and TaskUse should be related with a ProcessPerformer

(SPEM::ProcessStructure).

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 59 of 76

3.3.2.8 ArtifactUse

Super Class

BreakdownElement (SPEM::ProcessStructure)

ExtensibleElement (SPEM::Core)

Description

ArtifactUse represents a relationship between an ActorSpecificTask and an

ActorSpecificArtifact that is manipulated when carrying it out.

Attributes

Association properties

• linkedActorSpecificTask: ActorSpecificTask. The ActorSpecificTask an artifact is

manipulated in.

• linkedActorSpecificArtifact: ActorSpecificArtifact. The ActorSpecificArtifact a task

manipulates.

Semantics

An ArtifactUse connects an ActorSpecificArtifact to an ActorSpecificTask, and states that the

artifact is manipulated in the context of that particular ActorSpecificTask. It should be noted

that this implies that the Actor the ActorSpecificTask is assigned to has an ArtifactOwnership

relation with the ActorSpecificArtifact (the reverse is not always true).

ArtifactUse differs from WorkDefinitionParameter (SPEM::Core), ProcessParameter

(SPEM::ProcessPerformer), and DefaultTaskDefinitionParameter (SPEM::MethodContent) by

virtue of being specific, not to a WorkProductUse, but to one of its physical representations

(that is, an ActorSpecificArtifact).

When a TaskUse has only one ActorSpecificTask, and a WorkProductUse is represented by

only one ActorSpecificArtifact, and a ProcessParameter already connects the TaskUse and

the WorkProductUse, then an ArtifactUse relation between the ActorSpecificTask and the

ActorSpecificArtifact is a direct consequence, and may be omitted for brevity’s sake. This

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 60 of 76

holds when the ProcessParameter is replaced by a WorkDefinitionParameter or a

DefaultTaskDefinitionParameter.

Constraints

• Whenever an ActorSpecificTask and an ActorSpecificArtifact are related with an

ArtifactUse, the corresponding TaskUse and WorkProductUse should be related with a

ProcessPerformer (SPEM::ProcessStructure).

3.3.2.9 ArtifactOwnership

Super Class

BreakdownElement (SPEM::ProcessStructure)

ExtensibleElement (SPEM::Core)

Description

ArtifactOwnership represents a relationship between an Actor and an ActorSpecificArtifact that

belongs to his workspace.

Attributes

Association properties

• linkedActor: Actor. The actor that owns an artifact.

• linkedActorSpecificArtifact: ActorSpecificArtifact. The artifact owned by an Actor.

Semantics

An ArtifactOwnership links an Actor to an ActorSpecificArtifact that is part of his workspace. It

should be noted that this does not say anything about the ActorSpecificTask the artifact is

manipulated in, as an instance of Actor can be assigned to several instances of

ActorSpecificTask.

ArtifactOwnership differs from ProcessResponsibilityAssignment (SPEM::ProcessStructure)

and DefaultResponsibilityAssignment (SPEM::MethodContent) by virtue of connecting an

Actor (not a RoleUse) and an ActorSpecificArtifact (not a WorkProductUse).

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 61 of 76

When a RoleUse has only one Actor affected to it, and a WorkProductUse is represented by

only one ActorSpecificArtifact, and a ProcessResponsibilityAssignment already connects the

RoleUse and the WorkProductUse, then an ArtifactOwnership relation between the Actor and

the ActorSpecificArtifact is a direct consequence, and may be omitted for brevity’s sake. This

holds when the ProcessResponsibilityAssignment is replaced by a

DefaultResponsibilityAssignment.

Constraints

• Whenever an ActorSpecificArtifact and an Actor are related with an ArtifactOwnership, the

corresponding WorkProductUse and RoleUse should be related with a

ProcessResponsibilityAssignment (SPEM::ProcessStructure).

3.3.3 Concepts from SPEM

3.3.3.1 RoleUse

RoleUse from SPEM::ProcessStructure is extended with additional association properties.

Association properties

• affectedActor: Actor. This denotes an actor affected to this RoleUse.

Constraints

• If a RoleUse is associated with more than one Actor, then its hasMultipleOccurences

attribute must be set to true.

3.3.3.2 TaskUse

TaskUse from SPEM::MethodContent is extended with additional association properties.

Association properties

• contributingActorSpecificTask: ActorSpecificTask. This denotes an ActorSpecificTask which

contributes to the TaskUse.

Constraints

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 62 of 76

• If a TaskUse is associated with more than one ActorSpecificTask, than its

hasMultipleOccurences attribute must be set to true.

3.3.3.3 WorkProductUse

WorkProductUse from SPEM::ProcessStructure is extended with additional association properties.

Association properties

• representingActorSpecificArtifact: ActorSpecificArtifact. This denotes an

ActorSpecificArtifact which is copy of the WorkProductUse

Constraints

• If a WorkProductUse is associated to more than one ActorSpecificArtifact, than its

hasMultipleOccurences attribute must be set to true.

3.3.4 The CM_SPEM Base plug-in

Drawing inspiration from the SPEM 2.0 Base Plug-in, the CM_SPEM Base plug-in is a pre-defined

method plug-in, which provides some common instances for CM_SPEM relationships, in the

domain of collaboration in software and systems projects. It is only meant to provide a starting

point for process modelers.

The plug-in defines three subclasses of SPEM::Core::Kind, which all default and user-defined

relationships are instance of.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 63 of 76

Figure 20 - The CM_SPEM Base Plugin MetaClasses

3.3.4.1 ActorRelationshipKind

ActorRelationshipKind is a subclass of SPEM ::Core ::Kind, with its applicableMetaClass

association end set to ActorRelationship. Its instances are used to qualify relationships between

two instances of the Actor metaclass.

The following instances of ActorRelationshipKind are available by default:

• DefaultPushReceiver: Specifies that, by default, the changes the firstActor makes in his

workspace are sent to the secondActor.

• DefaultPullSource: Specifies that, by default, the firstActor updates his workspace by

pulling changes from the secondActor’s workspace.

3.3.4.2 ActorSpecificTaskRelationshipKind

ActorSpecificTaskRelationshipKind is a subclass of SPEM ::Core ::Kind, with its

applicableMetaClass association end set to ActorSpecificTaskRelationship. Its instances are used

to qualify relationships between two instances of the ActorSpecificTask metaclass.

The following instances of ActorSpecificTaskRelationshipKind are available by default:

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 64 of 76

• Impact: Specifies that the each time a step is carried out in the firstActorSpecificTask, it

potentially requires to be taken into account in the execution of the

secondActorSpecificTask.

3.3.4.3 ActorSpecificArtifactRelationshipKind

ActorSpecificArtifactRelationshipKind is a subclass of SPEM::Core::Kind, with its

applicableMetaClass association end set to ActorSpecificArtifactRelationship. Its instances are

used to qualify relationships between two instances of the ActorSpecificArtifact metaclass.

The following instances of ActorSpecificArtifactRelationshipKind are available by default:

• BlessedCopy: Specifies that, at any moment, the firstActorSpecificArtifact is the

authoritative version compared to the secondActorSpecificArtifact.

3.4 MODELISATION OF THE EXAMPLE WITH CM_SPEM

This section shows example models based on CM_SPEM::Collaboration structure, and

implementing the situations discussed in section 3.2. The icons defined in SPEM2.0 are reused,

and correspondence of the new ones with the new concepts is available below (icons defined in

SPEM are also recalled at the end). Relationships are represented by segments when they link

instances of different entities (Like an ActorSpecificArtifact and an Actor), and single-headed

arrows when they link instances of the same entity (the arrow points to the ‘second’ instance, as in

‘secondActor’). The name of the specific relationship is written inside square brackets on the arrow,

like this “[Blessed Copy]”.

Actor

ActorRelationship

ActorSpecificTask

ActorSpecificTaskRelationship

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 65 of 76

ActorSpecificArtifact

ActorSpecificArtifact with isPartialCopy set to true

ActorSpecificArtifactRelationship

ArtifactUse

ArtifactOwnership

TaskAssignment

RoleUse (from SPEM)

TaskUse (from SPEM)

WorkProductUse (from SPEM)

3.4.1 Situation 1: The same task carried out on copies of the same artifact

Three different instances of ActorSpecificTask are created:

• AliceAST in which UC1 is elaborated, using the ActorSpecificArtifact instance Alice_ASA.

• BobAST in which UC2 is elaborated, using the ActorSpecificArtifact instance Bob_ASA

• MikeAST in which UC3 and UC4 are elaborated, using the ActorSpecificArtifact instance

Mike_ASA

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 66 of 76

To keep the diagram clear, links between RoleUse and TaskUse, TaskUse and WorkProductUse,

RoleUse and WorkProductUse, have not been drawn. The kinds applied to instances of

ActorSpecificArtifactRelationship are indicated by bracketed names (like “[BlessedCopy]”).

3.4.2 Situation 2: The same task carried out on distinct artifacts (variation of
situation 1)

As in this situation, the ActorSpecificArtifact BobASA contains only the use case Bob is working on

(UC2), we rename it UC2_ASA (idem. for MikeASA which becomes UC3&4_ASA). The major

change here is the graphical notation for the partial copies (UC2_ASA and UC3&4_ASA) which

clearly shows they only partially represent the work product “Use Case Model”.

Elaborate	 Use	 Case	 Model	

Designer	

Use	 Case	 Model	

AliceAST	

BobAST	
MikeAST	

Alice	

Bob	
Mike	

Alice_ASA	

Bob_ASA	
Mike_ASA	

[BlessedCopy]	 [BlessedCopy]	

Figure 21 - Same task carried out by different actors on full-copy artifacts

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 67 of 76

3.4.3 Situation 3: A task carried out by people playing different roles

Two different instances of ActorSpecificTask are created:

• WriteTestAST, carried out by Bob, where the tests are written, using the

ActorSpecificArtifact BobTestASA

• ReviewTestAST, carried out by Tracy, where test code is reviewed for coverage,

inaccuracies, and style adherence, using the ActorSpecificArtifact TracyTestASA

It should be noted that this is only one way of modeling the situation. Another process designer

can chose to decompose the TaskUse “Elaborate Unit Tests” into two different TaskUse “Write

Unit Test” and “Review Unit Test” (TaskUse being a WorkBreakDownElement). Then,

WriteTestAST will be the only ActorSpecificTask contributing to the TaskUse “Write Unit Test”, and

ReviewTestAST will be the only ActorSpecificTask contributing to the TaskUse “Review Unit Test”.

Elaborate	 Use	 Case	 Model	

Designer	

Use	 Case	 Model	

AliceAST	

BobAST	
MikeAST	

Alice	

Bob	
Mike	

Alice_ASA	 [BlessedCopy]	 [BlessedCopy]	

UC2_ASA	
UC3&4_ASA	

Figure 22 - Same task carried out by different actors on partial-copy artifacts

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 68 of 76

3.5 CONCLUSION

This section developed extensions to SPEM2.0 so as to allow the description of additional

collaboration situations. Most of these situations arise when different people are doing the same

task, or manipulate the same artifact. The modeled examples show that the extension fulfills their

aim of describing these collaboration situations SPEM does not cover.

4. VIEWPOINT-ORIENTED PROCESS MODELLING
4.1 INTRODUCTION

A Galaxy process may involve a large number of participants who play different roles. Such a

Elaborate	 Unit	 Tests	

Test	 Writer	

Component	 Unit	 Tests	

WriteTestAST	

ReviewTestAST	

Bob	

Tracy	

[BlessedCopy]	

BobTestASA	
BobTestASA	

Code	 Reviewer	

Figure 23 - A task carried out by people playing different roles

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 69 of 76

process may be quite complex and difficult to define. Thanks to separation of concerns, viewpoint

oriented modeling is an efficient way to model complex systems. In previous work, we developed

the VUML profile [Nassar et al, 2003], [Anwar, 2010] which allows to represent a system design

according to functional viewpoints. In the scope of collaborative engineering, it is interesting to

make an analogy between viewpoint oriented system modeling and viewpoint-oriented process

modeling. Indeed, a process model can be seen as a product resulting from a dedicated process

also called "meta-process".

Informally speaking, a viewpoint is the perspective, corresponding to one role (simple or

composite), along which a process is modeled. Consequently, for a given process and a given

viewpoint, we identify a viewpoint process that is a subset of the process containing tasks

performed by the role associated to the viewpoint.

In the remainder of this section, we describe structural concepts of the CM_SPEM metamodel that

related to viewpoint process modeling. More precisely, we present the CM_SPEM viewpoint

structure package that contains concepts and relationships related to viewpoint process modeling.

The methodological aspect of viewpoint process modelling - that is how help process designers

defining their collaborative process models in the context of Galaxy projects - will be addressed in

the D2.4.2 deliverable.

4.2 THE VIEWPOINT STRUCTURE PACKAGE

4.2.1 General overview

The ViewpointStructure package is part of the CM_SPEM meta-model. It aims at grouping

concepts and relationships that are related to viewpoint process modeling. It is an extension of the

CM_SPEM::CollaborationStructure package made through the merge relation (see figure 15).

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 70 of 76

Figure 24 - Package merged by CM_SPEM::ViewpointStructure

The following figure shows the concepts of the package CM_SPEM::ViewpointStructure. For

readable sake, we decided to put into this package some links to related concepts of the D2.1

deliverable. So this package contains concepts defined in the D2.1 deliverable (Galaxy, Project,

Participant), concepts coming from SPEM (RoleUse, CompositeRole, TeamProfile) and

CM_SPEM::CollaborationStructure (Actor). Process is redefined from

SPEM::ProcessWithMethods. Viewpoint and ViewpointProcess are concepts specific of

CM_SPEM::ViewpointStructure.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 71 of 76

Figure 25: Package CM_SPEM::ViewpointStructure

In the following, we first recall the definition of concepts coming from the D2.1 and D2.3

deliverables and that are related to the current section, then we describe newly introduced

concepts.

4.2.2 Recall: concepts coming from D2.1 deliverable

4.2.2.1 Galaxy

Galaxy represents a set of projects and participants that use the Galaxy framework to develop

model-based projects in a collaborative way.

4.2.2.2 Project

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 72 of 76

In the context of Galaxy, a project is led by participants who work together to perform one or

several processes.

4.2.2.3 Participant

A participant is a person who participates into a Galaxy project. It is also a human Actor, as

introduced in previous section.

4.2.2.4 WorkGroup

A workgroup is a specialization for Galaxy of the concept of Group of the GCO ontology introduced

in the D2.3 deliverable. It is defined as a set of actors, each actor playing one or several roles.

4.2.3 Newly introduced concepts

4.2.3.1 Process

Description

Process is redefined from SPEM::ProcessWithMethods. In the context of Galaxy, a process

includes the tasks performed by participants belonging to a Galaxy project.

Association properties

• projects: Project[*]. Projects in which the process takes part.

• viewpoints: Viewpoint[*]. Viewpoints from which the process may be considered.

Semantics

A process is both a special case of Activity and a set of TaskUse corresponding to the

recursive decomposition of this activity. For instance, in the context of a project using the RUP

method, we can identify the (sub-)process "Elaborate the Use case Model". Such activity is

decomposed into several tasks: "Identify Use cases", "Prioritize use cases", "Define

Scenarios", etc. Several roles perform this process such as: "Analyst", "Designer", "Reviewer".

4.2.3.2 Viewpoint

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 73 of 76

Description

Viewpoint denotes the perspective from which a process is considered. It is associated to one

RoleUse that may be single or composite.

Association properties

• role: RoleUse. The role associated to the viewpoint.

• processes: Process[*]. Processes to which the viewpoint is applied.

Semantics

A viewpoint is a way to focus on tasks of a process associated to a given role (simple or

composite). For example, if we consider the process "Elaborate the Use Case Model",

viewpoints may be "Analyst", "Designer", or "Reviewer" (single roles), or "Analyst/Designer"

(composite role aggregating "Analyst" and "Designer" roles).

4.2.3.3 ViewPointProcess

Description

ViewpointProcess is a meta-class associated to a couple (Process, Viewpoint).

A ViewpointProcess is a process that corresponds to a process related to a given Viewpoint.

Association properties

• role: RoleUse. The role associated to the viewpoint.

• processes: Process. Processes to which the viewpoint is applied.

Semantics

A ViewpointProcess is a sub-process of a given process that corresponds to a given

viewpoint. For example, considering the "Elaborate the Use case Model" process, and the

viewpoint "Analyst", a ViewpointProcess will be the sub-process of "Elaborate the Use case

Model" corresponding to activities of one analyst (actor having the "Analysis" role).

4.2.3.4 Examples

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 74 of 76

Let us consider the process «Elaborate the Analysis Model of a system». It is performed by

participants having globally the analysts role (composite). Figure 25 shows the viewpointprocess

corresponding to the analysts viewpoint.

Figure 26: Analysts’ viewpointprocess for elaborating the analysis model

Let us consider now the sub-process corresponding to the refinement of the task « Elaborate the

Project Glossary », and let us focus on the analyst viewpoint (associated to a simple role). Figure

26 shows the resulting viewpointprocess.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 75 of 76

Figure 27: Analyst ‘s viewpointprocess for elaborating the glossary

If we consider now the Chief analyst viewpoint on the same task “Elaborate the glossary”, we

obtain a viewpointprocess depicted by Figure 27.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 76 of 76

Figure 28: Chief Analyst ‘s viewpointprocess for elaborating the glossary

4.3 CONCLUSION

In this section we have described viewpoint-oriented process modeling. The Viewpoint concept is

an efficient way to handle large and complex process models. A viewpoint is meaningful when it is

associated to one or several processes. It allows describing process views of a given process, that

is, tasks of the process corresponding to the role associated to the viewpoint.

As stated in the introduction, the methodological aspect of viewpoint process modeling will be

addressed in the D2.4.2 deliverable. More presicely, we will discuss in D2.4.2 the best way to

identify and use viewpoint processes. The result will be described as a meta-process based on

strategies (mainly a top down strategy and a bottom up strategy) to follow in order to build

collaborative process models in the context of Galaxy projects.

5. CONCLUSION

The work presented above in this document is part of the result of the task T2.4 of the Galaxy work

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 77 of 77

package WP2. The global objective of this task is to define concepts and a methodology for

modeling processes that govern model-driven collaborative development, so called Collaborative

MDE Processes. The final aim is to use such process models in order to provide a computer-

assisted enactment.

To achieve that goal, we have defined a metamodel – called CM_SPEM - that extends SPEM 2.0

and QVT metamodels in order to include concepts related to MDE processes. A model is defined

as a specialization of a SPEM work product. Thus, activities may work on models. The concept of

model transformation is defined as a specialization of SPEM work definition that has models as

input/output parameters. It is also defined as a SPEM work breakdown element. Thus, model

transformations may be nested by SPEM activities. A MDE process is considered as a kind of

SPEM activity, which may contain activities that work on models, including model transformation,

model edition, model refactoring, etc.

In this document, we have focused our work on the structural part of MDE collaborative process

models. To do that, we have defined the following packages, as stated in the introduction above

(see Figure 1):

• CM_SPEM::ProcessStructure that extends SPEM and QVT packages by redefining or

adding concepts related to models transformations.

• CM_SPEM::CollaborationStructure that extends SPEM and other CM_SPEM packages by

adding concepts related to collaborative development.

• CM_SPEM::ViewpointStructure that extends CM_SPEM::CollaborationStructure by adding

new concepts related to viewpoint modeling.

In the D2.4.2 deliverable which is the second result of the task T2.4, we will address the enactment

of MDE collaborative processes. The goal is to assist developers during a Galaxy project. To make

that possible, we will enrich the CM_SPEM metamodel in order to provide process designers with

concepts related to guidance and behavioral aspects.

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE: x.x

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 78 of 78

6. REFERENCES

[Almeida, 2010] M. A. Almeida da Silva, R. Bendraou, X. Blanc, M.P. Gervais. Early Deviation Detection in

Modeling activities of MDE Processes. ACM IEE International Conference on Model Driven

Engineering Languages and Systems MODELS 2010, Oslo, Norway

[Anwar, 2010] Anwar A., S., Coulette B., Nassar M., Kriouile A,. (2010). A Rule-Driven Approach for

composing Viewpoint-oriented Models. Journal of Object Technology, ETH Swiss Federal

Institute of Technology, Vol. 9 N. 2, pp. 89-114.

[Bézivin, 2004] Bézivin, J., Breton, E.: Applying the Basic Principles of Model Engineering to the Field of

Process Engineering. The European Journal for the Informatics Professional. 5, 27-33 (2004)

 [Kabbaj, 2008] M. Kabbaj, R. Lbath, B. Coulette. “A Deviation Management System for Handling Software

Process Enactement Evolution”. In International Conference on Software Process ICSP 2008

 [Marcaillou, 1994] Marcaillou, S., Coulette, B., Kriouile, A., Visibility: a new relationship for complex system

modelling, International Conference TOOLS USA’94, Santa Barbara, Californie, USA, 1994.

[Nassar et al, 2003] Nassar, M., Coulette, B., Crégut, X., Marcaillou, S and Kriouile., A. “Towards a View based Unified Modeling

Language”. In ICEIS’03, Angers, France, 2003.

 [OMG, 2008-a] OMG SPEM2.0, “Software & System Process Engineering Metamodel”, OMG document, final

adopted specification, ptc/07-03-03, at http://www.omg.org

[OMG, 2008-b] Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, at

http://www.omg.org/spec/QVT/1.0/PDF/

