[image: image1.jpg]

[image: image13.wmf]

	Erro! Nome de propriedade do documento desconhecido. IF = "N" "" Erro! Nome de propriedade do documento desconhecido. * MERGEFORMAT
Erro! Nome de propriedade do documento desconhecido.

Erro! Nome de propriedade do documento desconhecido.
	Erro! Nome de propriedade do documento desconhecido. IF = "" "" "ORIGIN " * MERGEFORMAT
ORIGIN
Erro! Nome de propriedade do documento desconhecido. IF = "" "" "Erro! Nome de propriedade do documento desconhecido." * MERGEFORMAT
Erro! Nome de propriedade do documento desconhecido.

	Erro! Nome de propriedade do documento desconhecido. IF = "" "" "PROJECT " * MERGEFORMAT
PROJECT
Erro! Nome de propriedade do documento desconhecido. IF = "" "" "Erro! Nome de propriedade do documento desconhecido." * MERGEFORMAT
Erro! Nome de propriedade do documento desconhecido.

	
	REFERENCE Erro! Nome de propriedade do documento desconhecido.
ISSUE Erro! Nome de propriedade do documento desconhecido.
	DATE Erro! Nome de propriedade do documento desconhecido.

	Galaxy
	[image: image12.png]AGENCE NATIONALE DE LA RECHERCHE

	[image: image24.png]A model element whose id is el

A model element has a property
a assigned to 2

A model element references
another model element

A model element contains
another model element

rl

1

P1

C1

vl A Reuse Unit named r1, version vl

Bi-directionnal references
between Reuse Units

A Product Unit named p1,
version vl

A Collaborative Unite named C1

Galaxy : Developpement collaboratif de systèmes complexes

selon une approche guidée par les modèles

Deliverable D2.2: Mechanism for Collaborative Unit Synchronization

	
	NamE
	partner
	Date

	Written by
	J. Robin
	LIP6
	09/12/2010

	
	X. Blanc
	LIP6
	09/12/2010

	
	
	
	

	Reviewed by
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Record of Revisions

	Issue
	Date
	Effect on
	Reasons For Revision

	
	
	Page
	Para
	

	01
	15/10/2010
	
	
	Création du document

	02
	28/10/2010
	
	
	Prise en compte de la réunion Galaxy Toulouse

	03
	03/12/2010
	
	
	Prise en compte de la réunion Galaxy Bordeaux

	04
	09/12/2010
	
	
	Finalisation première version SVN

Table of contents

71.
Introduction

82.
RemindER on The Galaxy framework

82.1
LAYERED MVC ARCHITECTURE

112.2
model fragmentation

122.3
Framework configuration and revision strategy

132.4
Commit and update

163.
DIFF

163.1
Principles

173.2
Diff DATA STRUCTURES

193.3
Diff Algorithms

193.3.1
Model Element Diff Algorithm

193.3.2
View diff algorithm

204.
Merge

204.1
Principles

204.2
ERROR, CONFLICT and INCONSISTENCY

214.3
Algorithm

214.3.1
Model Conflict

214.3.2
View Conflict

225.
Illustrative EXAMPLE

266.
Discussion on Scalabity

277.
References

28Appendix 1.
IOCL specification of the diff operations

Table of APPLICABLE DOCUMENTS

	N°
	title
	Reference
	Issue
	Date
	Source

	
	
	
	
	
	Siglum
	Name

	A1
	
	
	
	
	
	

	A2
	
	
	
	
	
	

	A3
	
	
	
	
	
	

	A4
	
	
	
	
	
	

Table of ReferenceD DOCUMENTS

	N°
	title
	Reference
	Issue

	
	
	
	

	R1
	Galaxy glossary
	
	

	R2
	Collaborative Unit Definition
	D2.1
	

1. Introduction

This document presents D2.2., i.e. the second deliverable of the second work package of the project. The goal of this deliverable is to detail three key aspects in the Collaborative Unit (CU) specification presented in D2.1, the preceding deliverable of the same work package.
As defined in the D0.1.1 deliverable presenting the Galaxy project, these three aspects are the following:

1. Collaborative unit diff: a specification of the collaborative unit operation that compares different versions of a given artifact set stored in the same or two different collaborative units; this operation must return all the differences between the artifact set pair passed to it as input; it constitutes the first main aspect of the collaborative unit synchronization mechanism;

2. Collaborative unit merge: the specification of one strategy to merge two versions of a given artifact set stored in the same or two different collaborative units; this operation must return an artifact set that contains all the compatible model elements that these artifact sets persistently store; it constitutes the second main aspect of the collaborative unit synchronization mechanism; note that if some model element in the two artifact set versions to merge are incompatible, the merge operation fails; specifying it thus also entails defining one strategy to detect incompatibility between elements;

3. Means to balance the collaboration strategy: there are two main
collaborative development schemes (a) the lock-modify-unlock sequence, called pessimist locking and (b) the copy-modify-merge sequence, called optimist locking; depending on a variety of project specific factors, such participant organization policies, modification granularity and frequency, coupling level between artifacts, these two strategies may have significantly different relative performance; insuring scalable interaction thus requires to support both approach; since this is the case of the collaborative unit concept as defined in D2.1., this aspect was in effect already address in D2.1 with no need for further elaboration in the present D2.2.

The document is organized as followed. In section 2, we quickly review the concepts defined in the preceding deliverable D2.1 that the present D2.2 elaborates. In section 3 and 4, we then present in turn the CU diff and the CU merge. For each concept, we first recall their usage and define the principles on which they are based. We then provide the new data structures needed to add into the Galaxy framework to specify, intuitively in natural language, the step-by-step algorithm for the corresponding operation (diff or merge). Finally, in section 5, we provide a small illustrative example of each operation call and result.
In Appendix 1, we give one precise procedural specification of the diff operation body as expressions in IOCL (Imperative Object Constraint Language).
2. RemindER on The Galaxy framework
2.1 LAYERED MVC ARCHITECTURE

D2.1 structures the Galaxy framework
 in three layers:

1. The Galaxy framework API, shown in Figure 1; it defines a set of conceptual interfaces through which the CASE tool of each development team can interoperate;
2. The Galaxy artifacts shown in Figure 2 ; it defines the conceptual data structures of models, model elements and model views;

3. The Galaxy collaborative unit shown in Figure 3; it defines an intermediary layer that mediates between the high-level Galaxy framework API layer and the low-level Galaxy artifact layer.

[image: image2]
Figure 1 : The Galaxy framework API (from D2.1)

[image: image3]
Figure 2 : The Galaxy artifacts (Product, Reuse and Method Units, from D2.1)

[image: image4]
Figure 3 : The Galaxy collaborative unit (from D2.1)

2.2 model fragmentation
As shown in Figure 2, D2.1 defined three classes of “artifacts”: Product Unit (PU), Reuse Unit (RU) and Method Unit (MU). PU form an artifact containment tree which leaves are RU and MU. The model is partitioned into the RU. The set of all model views is partitioned into the MU.
As shown in Figure 3, each project participant possesses its own Collaborative Unit (CU) which groups the artifacts containing the model elements and views relevant to him (her).
As shown in Figure 1, all four classes of units (CU, RU, MU and PU) are hidden for the participant (i.e., Galaxy framework user). Participants only know that they are working on model elements, shown into views (e.g. UML diagrams).
Figure 4 shows a simple example with a participant collaborating with others on a model that contains five elements shown in two views. The participant has a CU that contains one PU that itself contains one RU that stores all the model elements and two MU (one for each view).
Figure 4[image: image12.png] : The CU of a project participant gathers the PU, RU and MU containing the model elements and views (diagrams) onto which (s)he collaborates.
As shown in Figure 3, for each project, there is one Galaxy CU per participant and one Galaxy CU per global blessed repository.
When a project follows the copy, modify, merge collaboration paradigm, synchronizing the local and the remote collaborative units requires the availability of a merge operation between model elements, model views and the artifact storing them (PU, RU and MU).
2.3 Framework configuration and revision strategy

As shown in Figure 5, the Galaxy framework is configurable by what we called a revision strategy.

Such strategy defines:

1. How the model is fragmented (model fragmentation strategy) by defining (1) how model elements are partitioned into product and reuse units, (2) how model views are partitioned into product and method units and (3) how model and view revision actions are translated at the CU layer into artifact revision actions (i.e., PU, RU and MU act);

2. How the pairs of different model elements and model views are merged into one;

3. How merged elements and views are audited for inconsistencies.

[image: image5]
Figure 5 : Configurating the Galaxy framework with a revision strategy (from D2.1)

To use the Galaxy framework as revision control system for a collaborative MDE project a team must first configure it by defining the ModelFragmentationStrategy, MergeStrategy and InconsistencyStrategy. In deliverable D2.1, we gave several examples of concrete model fragmentation strategies. In the present deliverable D2.2, we give one example of concrete merge strategy. We also explain how an inconsistency strategy is used in concert with the merge strategy in the basic revision control operations commitg and update of the framework. These operations were specified in D2.1 deliverable, we summarize their role, as well, as their relation with the operations diff and merge, focus of the D2.2.
2.4 Commit and update

After a participant locally changes model elements or views by using a CASE tool connected to a Galaxy framework, (s)he needs to commit these changes to a CU to make them available to participants with whom (s)he collaborates. In this short reminder, we will suppose, for the sake of simplicity, that the framework is configured in centralized mode. In such mode, a participant action results in a call to the commitg operation of the Galaxy framework API to commit its local changes to a remote blessed CU. As argument, the commitg of the API takes as main input either a model element or a view element.
The Galaxy framework assumes that when selecting one model element to be committed, the participant in fact wishes to commit not only this element (called the root element), but together with it all the elements located below it in the element containment tree; commitg calls the map operations of the model fragmentation strategy on both the root element selected by the participant and all its descendants in the containment tree.
Depending on the model fragmentation strategy implemented by these map operations, these descendants may be located in different PUs and RUs. Therefore, after calling those map functions, the commitg operation of Galaxy model revision class, calls the commitg of the CU for all artifacts (PU or RU) that contains the root and its descendant elements. This commitg call increments the revision attribute (an integer) of these artifacts.
After this increment, the remotelyChanged attribute of the root artifact (PU) containing all these elements (and those referenced by them) is read. If it is false, the remote CU contains the same version than the one contained in the local CU before the local changes. A new commit object is then simply created in the remote CU history. This object points to a copy of the artifacts resulting from the committed local changes.
If in contrast, the value of remotelyChanged is true, it means than remote changes occurred concurrently with the local ones. In this case, the commitg operation fails and the participant needs to call the update operation before attempting to commit again the local changes. It is this update operation that calls the merge operations defined in the merge strategy to try automatically merge those two concurrent set changes: the local one and the remote one. It is thus the need for reconcile concurrent changes that motivates the merge operations.
Automatic merge only succeeds when the concurrent local and remote changes concerned unrelated model elements, references and attributes. When the changes interfere in a conflicting way, the merge fails. In such case, it returns a conflict (class Conflict) instead of returning a merged element (or branch, view or artifact). As we will explain in section 4, a conflict occurs when the local and remote changes cannot be reconciled into a single well-formed labeled directed graph.
Even if such purely syntactic reconciliation is possible, the merge operation does not return before calling the audit operation of the inconsistency audit strategy on the reconciled well-formed labeled direct graph, To goal of this audit call is to check whether this graph does not violate consistency constraints (e.g, those specified in a meta-model). If it does violate one such constraint, the merge then fails and returns the inconsistencies that caused the failure instead of the reconciled graph.

When a merge operation fails, the update operation that called it also fails. This is when the participant who called the update operation needs to call the diff operation. This operation compares the elements resulting from the local changes, from those resulting from the concurrent remote changes. It explicitly displays all the differences between the two. This allows the participant to understand the causes of the error returned by the failed merge call, correct them manually using a CASE tool, and call commitg again on the correction.
3. DIFF

3.1 Principles

At the Galaxy framework layer, a participant calls the diffModelElt operation (resp. diffView) operation to compare two versions of one model element (resp. one model view).
The principles of diffModelElt are the following. First, this operation does not merely compare the versions of the single model element rootMe passed as input argument. Instead, it recursively compares:

· all the descendants down(rootMe) of rootMe in the model element containment tree;

· all the elements stored in the same RU sameRu(down(rootMe)) than these descendants;

· all the elements stored in the RU set ref(sameRu(down(rootMe))) where some reference from or to sameRu(down(rootMe)) was locally changed;

Recursing
on the model element containment tree is motivated by a user-interface
concern. When a participant wishes to compare two versions of a model element, (s)he generally implicitly means to compare not only the attributes of these elements but also those of all its nested elements.
Recursing
on other elements stored in the same or referenced artifacts than the one to compare is also motivated by a user-interface concern
: the model fragmentation strategy that partitions elements in artifacts must remain transparent to the participant
.
This transparency may lead to the following situation for a participant lp:

· participant lp calls commitg on a model element rootMe;

· it fails, because while lp was changing rootMe locally, another participant rp concurrently changed another element pointingMe and committed it to the blessed CU before lp, unfortunately both rootMe and pointingMe belongs to the same RU. As a consequence, while rp has committed pointingMe, the version of RU has been increased.
· comparing the local and remote versions of down(rootMe), thus requires comparing all the artifacts that were changed by rp’s commit
.

The consequence of the first principle is thus that the diffModelElt operation compares two versions of a model element set. These two versions, a local one and a remote one, concurrently evolved from a base version, their common ancestor in the revision history.
The second principle of the diffModelElt operation (resp. diffView) is that it proceeds in three main steps. The first compares the local version with the base version. The second compares the remote version with the base version. These two steps are asymmetric comparisons of model elements. They return the elements that have been created (or deleted) and the attributes and the references that have been assigned from the base version. The third step makes a symmetric comparison on the results of the first two steps. It returns a set of mismatches. In the next subsection, we give and explain a precise data model for such mismatches.
3.2 Diff DATA STRUCTURES
The data structure representing both the input and output of the operations diffModelElt and diffView are shown in Figure 6. The former returns an object of class MeDiff (Model Element Diff) while the latter returns an object of the class ViewDiff.

[image: image6]
Figure 6 : Diff data structures
A MeDiff defines the differences that exist between three versions (local, remote, base) of a same model element. MeDiff lists the primitive values that differ in the local, remote and base versions (class MaDiff, i.e., Model Attribute Diff). MeDiff also lists all the references (objects of class ModelRef) ingoing to or outgoing from the element, that were added or deleted from the base to the local version but not from the base to the remote version, or vice-versa from the base to remote version but not from the base to the local version.
An MeDiff object recursively contains other MeDiff objects (auto-composition from the root role to the ramification role).
3.3 Diff Algorithms
3.3.1 Model Element Diff Algorithm
As input, diffModelElt take two versions, local and remote of the same model element. From these versions it has access to their common ancestor base version in the revision history. As input, diffModelElt may also have access to:

· the local sequence of model actions (role base2local) that changed the base version into the local version;

· the remote sequence of model actions (role base2remote) that changed the base version into the remote version.

This is the case if the commitg operation stores these actions in the RU of the committed element (role mda navigating from ModelElt class to the ModelAction class shown in Figure 2).

If it is not the case, such sequences can be computed from the local, remote and base elements following algorithms described in [9] (diff by ids algorithm).

3.3.2 View diff algorithm
As input, diffView takes two versions, local and remote of the same model view. From these versions it has access to their common ancestor base version in the revision history. As input, diffViewt may also have access to:

· the local sequence of view actions (role base2local) that changed the base version into the local version;

· the remote sequence of view actions (role base2remote) that changed the base version into the remote version.

This is the case if the commitg operation stores these actions in the MU of the committed view (role vwa navigating from the View class the ViewAction class shown in Figure 2). There are only six subclasses of ViewAction: showMe, hideMe, showMr, hideMr, showMa and hideMa, to show in the view or hide from the view a given a model element, a model element attribute or a model reference. Since these actions are all trivial switches without any recursion or iteration, computing them from the local and base views is straightforward. The ouput ViewDiff of the diffView operation simply lists the model elements (resp. model attribute, model references) that are shown (resp. hidden) in the local version of the view but not in the remote, and vice-versa.

4. Merge

4.1 Principles

A merge is used when changes are performed concurrently. The main goal is to return one model that integrates almost all the changes.

A merge has to analyze the differences between the changes in order to identify if they are in conflict or not. A conflict is a pair of incompatible changes. For instance, if one change consists in removing a model element while another consists in assigning a property value to the element, then those two changes are in conflict. Only one of them can be integrated in the resulting model.

Regarding all non-conflict changes, all of them can be integrated. However, the merge algorithm can choose not to consider some of them.
4.2 ERROR, CONFLICT and INCONSISTENCY

In our context, changes are either expressed by ModelDiff or ViewDiff. A ModelDiff (resp. ViewDiff) targets only one element and represents all the differences between the three versions (base, remote or local) of the element.
Looking at the differences of a ModelDiff, the following rules define whether the changes that apply to the element of ModelDiff are in conflict:
· If a same attribute is modified with two different values in the remote and the local version, then there is a conflict.
· If the element is deleted in one version (local or remote) and modified in the other version (remote or local), then there is a conflict.
Looking at the differences of a ViewDiff, the following rules define whether the changes that target the element are in conflict:

· If an attribute of an element is showed in one version (local or remote) and the element is hidden in another version (remote or local), then there is a conflict.

· If a reference of an element is showed in one version (local or remote) and the element is hidden in another version (remote or local), then there is a conflict.
4.3 Algorithm

In this section, we propose one possible Merge algorithm. It should be noted that any other algorithm can be substituted to this algorithm. This algorithm considers that all non-conflict changes are integrated in the returned model.

4.3.1 Model Conflict
The following rules apply to merge the two possible kinds of conflict:
· If the conflict is related to the attribute values, then the value of the local version is used in the returned model.

· If the conflict is related to the deletion of a model element, then the element is not deleted in the returned model and the other change is intergrated.

4.3.2 View Conflict
The following rule applies to merge the different kinds of conflict:

· The show operation is integrated whereas the hid operation is not.
5. Illustrative EXAMPLE

This section presents a simple example that highlights how collaborative units are synchronized. In this example, two developers (Developer A and Developer B) collaborate to build a same model. They use a global blessed repository to synchronize their work. They both share a same model fragmentation revision strategy (see D2.1) that consists in storing each model element in its own Reuse Unit (RU). Moreover, for each Reuse Unit, there is only one Product Unit that contains it. On top of that, a single root Product Unit groups all Product Units. The Figure 6 presents the icons we use to present this example.

[image: image7]

The Figure 7 presents the initial model. This model is composed of two model elements (e1 and e2). There is a link between e1 and e2, which is a containment link (i.e. the Association that types this link is an composition
). According to the strategy, each model element has its own RU (ru1 and ru2). Moreover, each RU has its own PU (pu1 and pu2). On top of that, all PUs are contained in the root PU (pu0 is the root PU). The blessed Collaborative Unit contains all the units.

[image: image8]
Present the Diff meta-model

In our example, the two developers (developer A and developer B) update their Collaborative Units in order to start to collaborate.
A modifies the model. He removes the link between e1 and e2. Then he deletes e2. Then he creates a new model element (e3) and assigns a link from e1 to e3
. Figure 8 presents the Collaborative Unit of developer A after performing those modifications. According to the strategy, a reuse unit has been created to store e3. Moreover, since e1 and e2 have changed, the versions of ru1, ru2 and their containing PUs have been increased.

[image: image9]
Now, imagine that developer A commits his work to the blessed collaborative unit. He selects e1 as the root element to commit. The algorithm finds that ru1 has to be committed but also ru2 (as a reference has been removed between ru1 and ru2) and ru3 (as e1 references e3). As the versions of those RUs match
the versions of the corresponding RU stored in the blessed CU, the commit is accepted. Hence, the blessed CU and the CU of developer A are synchronized.

Concurrently, the developer B modifies the model. He changes the assigned value of e1::a (a=4) and the value of e2::b (b=3). Figure 10 resents the collaborative unit of developer B. As e1 and e2 have been changed, the versions of their RU have been increased.

[image: image10]
Now, imagine that developer B wants to commit his work to the blessed collaborative unit. He selects e1 as the root element to commit. The algorithm finds that ru1 and ru2 has to be committed (both e1 and e2 have been changed). As the versions of those RUs mismatch the version of the corresponding RU stored in the blessed CU, the commit is not accepted.
Developer B then decides to update his work and to call the diff algorithm. The diff algorithm yields that conflictual changes have been made. Regarding e1, the property “a” is either assigned to 3 (by developer A) or to 4 (by developer B). Regarding e2, either it is removed (by developer B) or its property is changed (b=3). Other changes are not conflicts
(the link between e1 and e2 has been removed; e3 has been created and linked with e1).
B then manually changes the model. He keeps the change of the developer A for e1 (a=3) but keeps his change for e2 (e2 is not deleted and b=3). Figure 11
 presents the final Collaborative Unit that is committed to the blessed Collaborative Unit. Developer B and the blessed Collaborative Unit are now synchronized. Developer A will be synchronized when he will update his model.
[image: image13.wmf]
[image: image11]

6. Discussion on Scalabity

Regarding scalability, the less PU, MU and CU are modified in reaction to committing a model element, the less conflict may occur. Section 3 clearly explains that a set of PU, MU and RU are considered while committing one model element. Those PU, MU and RU contain model elements others than the one that has been changed. At least, they contain the containment tree of the root model element.
The first principle that has to be respected is the fact that the number of considered PU, MU and RU should be bounded. Indeed, committing one model element should not end up with committing all PU, MU and RU. We argue that the number of PU, MU and RU should be proportional to the number of elements that belong to the containment tree of the committed element. This number is always bounded with models that follow a power law, which is the case of UML models
.
The second principle that governs scalability is the ratio of modified elements versus versioned elements. While only one element is committed, it represents all its containment tree. As a consequence, all the containment is committed. When those elements are committed, the version of their corresponding PU, MU and RU are increased. However, those PU, MU and RU certainly possess other elements. As a consequence, those elements are impacted by the commit although they have not been modified. We consider that the root model element and its containment tree are the truly modified elements (ModE). All the elements that belong to the corresponding PU, MU and RU are versioned elements (VersE). Regarding scalability, we argue that ModE should be close to VersE (ideally ModE = VersE).
7. References
[1] Blanc, X., Mougenot, A., Mounier, I. and Mens. T. Incremental detection of model inconsistencies based on model operations. CAiSE’09. 21st Conference on Advanced Informatin Systems Engineering. Amsterdam, The Netherlands. 2009.

[2] Object Management Group. The Meta-Object Facility Core. www.omg.org/mof/
[3] Object Management Group. The Object Constraint Language, Version 2.2. http://www.omg.org/spec/OCL/2.2/
[4] Object Management Group. Meta-Object Facility (MOF2.0) Query/View/Transformation 1.0 http://www.omg.org/spec/QVT.

[5] Object Management Group. The XML Metadata Interchange. www.omg.org/technology/documents/formal/xmi.htm.
[6] O’Sullivan. Mercurial: The Definitive Guide. O’Reilly. 2009.

[7] Mougenot, A., Blanc, X. and Gervais, M.P. D-Praxis: a peer-to-peer collaborative editing framework. DAIS’09. 9th Internation Conference on Distributed Applicatio] n and Interoperable Systems.

[8] Sriplakich, P., Blanc, X. and Gervais, M.P. Collaborative software engineering on large-scale models: requirements and experience in ModelBus. SAC’08. ACM Symposium on Applied Computing. Fortaleza, Ceara, Brazil. 2008.
[9] Sprilakich, P. ModelBus: un environment réparti et ouvert pour l’ingéniérie de modèles. PhD. Thesis. Université Pierre et Marie Curie, Paris, France, 2007. (In spite of its French title, the thesis is written in English).

Appendix 1. IOCL specification of the diff operations

IOCL is part of the OMG MOF-QVT (Meta-Object Facility Query, View, Transform) standard [4] for model transformation specification. Its original purpose is to support procedural specifications of imperatively executable model transformations. It is a simple and intuitive extension of the OCL, (another OMG standard, part of UML2, to specify constraints on UML models and MOF meta-models [3]) with basic imperative constructs such a variable definition, variable assignment, conditionals and loops. The goal of the IOCL specifications is merely to prove that the diff and merge algorithm models provided in the present D2.2 deliverable are sufficiently precise to serve as a sound basis for implementation. It is in no way prescriptive. Once the algorithm has been understood, a given implementation might provide the specified services in alternative fashions using alternative data structures (for example to satisfy specific non-functional requirements or reuse legacy tools).

1 context GalaxyQueryProcessor::diffModelElt(projId: String, meId: String, localParticId: String, remoteParticId: String): MeDiff

2 body: do { var localCu:CollabUnit := getCollabUnit(projId, localParticId);

 -- get the local collaborative unit localCu for project whose id is projId and whose participant is localParticId

3 var localRev:Integer = localCu->head->tip.revision

 -- get revision number of last commit in the local head branch of localCu

4 var localMe:ModelElt := getModelElt(projId, meID, localParticId, localRev);

 -- get latest local version localMe of modelElt whose Id is meId in localCu

5 var baseMe:ModelElt := getModelElt(projId, meID, localparticId, localRev-1);

 -- get base version baseMe of modelElt whose Id is meId in local Cu

6 var diffBase2LocalActions:ModelAction[*] := localMe->mda;

 -- the action sequence from baseMe to localMe was stored in the galaxy when the same participant last called commitl or update on localMe;

7 var remoteCu:CollabUnit := getCollabUnit(projId, remoteParticId);

 -- get the remote collaborative unit remoteCu for project whose id is projId and whose participant is remoteParticId

8 var remoteRev:Integer = remoteCu->head->tip.revision

 -- get revision number of last commit in the remote head branch of remoteCu

9 var remoteMe:ModelElt := getModelElt(projId, meID, remoteParticId, remoteRev);

 -- get latest remote version remoteMe of modelElt whose Id is meId in remoteCu

10 compute diffBase2RemoteActions:ModelAction[*] := remoteMe.mda

11 {

12 var prevRemote : ModelElt := remoteMe->prevRev;

13 var prevRemoteRev:Integer = prevRev.revision;

14 while (prevRemoteRev => localRev-1)

15 {

16 prevRemote := prevRemote->prevRev;

17 prevRemoteRev := prevRemoteRev -1;

18 diffBase2RemoteActions := diffBase2RemoteActions->prepend(prevRemote.mda);

19 }

20 }

 -- the action sequence from the BaseMe to RemoteMe is constructed by iterating over prevRev links from remoteMe

 -- until reaching a model element which revision number matches that of baseMe;

21 var inLocalNotRemote:ModelAction[*] := diffBase2LocalActions - diffBase2RemoteActions;

 -- the actions in the baseMe to localMe sequence, but not in baseMe to remoteMe sequence;

22 var inRemoteNotLocal:ModelAction[*] := diffBase2RemoteActions - diffBase2LocalActions;

 -- the actions in the baseMe to remoteMe sequence, but not in the baseMe to localMe;

23 diffLocalRemote := new MeDiff;

 -- create new MeDiff object;

24 diffLocalRemote.local := localMe;

25 diffLocalRemote.remote := remoteMe;

26 diffLocalRemote.base := baseMe;

 -- fills it local (resp. remote, base) role with localMe (resp. remoteMe, baseMe);

27 diffLocalRemote.base2local := diffBase2LocalActions;

28 diffLocalRemote.base2remote := diffBase2RemoteActions;

 -- fills its base2local (resp. base2remote) role with the actions sequence from baseMe to localMe (resp. remoteMe)

29 diffLocalRemote.outMrAddedToLocalNotRemote := inLocalNotRemote->select(ar:AddRef | ar.from = localMe)->collect(result);

 -- the references added from baseMe to localMe but not to remoteMe are obtained by selecting the outgoing AddRef actions

 -- from the sequence from baseMe to localMe minus the sequence from baseMe to remoteMe

30 diffLocalRemote.outMrAddedToRemoteNotLocal := inRemoteNotLocal->select(ar:AddRef | ar.from = remoteMe)->collect(result);

 -- the references added from baseMe to remoteMe but not to localMe are obtained by selecting the outgoing AddRef actions

 -- from the sequence from baseMe to remoteMe minus the sequence from baseMe to localMe

31 diffLocalRemote.outMrDeletedToLocalNotRemote := inLocalNotRemote->select(ar:RmRef | ar.from = localMe)->collect(result);

 -- the references deleted from baseMe to localMe but not to remoteMe are obtained by selecting the outgoing RmRef actions

 -- from the sequence from baseMe to localMe minus the sequence from baseMe to remoteMe

32 diffLocalRemote.outMrDeletedToRemoteNotLocal := inRemoteNotLocal-->select(ar:RmRef | ar.from = remoteMe)->collect(result);

 -- the references deleted from baseMe to remoteMe but not to localMe are obtained by selecting the outgoing RmRef actions

 -- from the sequence from baseMe to remoteMe minus the sequence from baseMe to localMe

33 diffLocalRemote.inMrAddedToLocalNotRemote := inLocalNotRemote->select(ar:AddRef | ar.to = localMe)->collect(result);

 -- the references added from baseMe to localMe but not to remoteMe are obtained by selecting the ingoing AddRef actions

 -- from the sequence from baseMe to localMe minus the sequence from baseMe to remoteMe

34 diffLocalRemote.inMrAddedToRemoteNotLocal := inRemoteNotLocal->select(ar:AddRef | ar.to = remoteMe)->collect(result);

 -- the references added from baseMe to remoteMe but not to localMe are obtained by selecting the ingoing AddRef actions

 -- from the sequence from baseMe to remoteMe minus the sequence from baseMe to localMe

35 diffLocalRemote.inMrDeletedToLocalNotRemote := inLocalNotRemote->select(ar:RmRef | ar.to = localMe)->collect(result);

 -- the references deleted from baseMe to localMe but not to remoteMe are obtained by selecting the ingoing RmRef actions

 -- from the sequence from baseMe to localMe minus the sequence from baseMe to remoteMe

36 diffLocalRemote.inMrDeletedToRemoteNotLocal := inRemoteNotLocal-->select(ar:RmRef | ar.to = remoteMe)->collect(result);

 -- the references deleted from baseMe to remoteMe but not to localMe are obtained by selecting the ingoing RmRef actions

 -- from the sequence from baseMe to remoteMe minus the sequence from baseMe to localMe

 diffLocalRemote.outMrAddedToBothWithDiffTargets := localMe->sourceOf->iterate(r:ModelRef; av:AddVal | localme.mda->

37 var finalAddValsInLocal:AddVal[*] := localMe.attr->iterate(a:Attribute; sv:AddVal | localMe.mda->select(sv: AddVal | sv.host = localMe and sv.attr = a)->last());

 -- extract from the action sequence from baseMe to localMe the last AddVal action for each attribute

38 var finalAddValsInRemote:AddVal[*] := remoteMe.attr->iterate(a:Attribute; sv:AddVal | remoteMe.mda->select(sv: AddVal | sv.host = remoteMe and sv.attr = a)->last());

 -- extract from the action sequence from baseMe to remoteMe the last AddVal action for each attribute

39 finalAddValsInLocal->asSet().symmetricDifference(finalAddValsInRemote->asSet())-> forEach(sv);

 -- for each action sv in the symmetric difference between the respective last AddVal action sequences from baseMe to localMe and from baseMe to remoteMe, recasted as sets

40 {

41 mad := new MaDiff;

 -- create a new object mad of type MaDiff

42 mad.attr := sv.attr;

 -- concerning the attribute argument of sv and showing:

43 mad.valLocal := sv.val;

 -- the attribute value in localMe

44 mad.valRemote := localMe.attr->select(name = sv.attr.name)->val;

 -- the value of the same attribute in remoteMe

45 mad.valBase := mad.valRemote;

 -- and the value of the same attribute in baseMe

46 diffLocalRemote->maDiff := diffLocalRemote->maDiff->including(mad)

 -- add this new maDiff object to the maDiff role of the meDiff object under construction

47 }

48 var containedMeRus := localMe.contained->ru;

 -- get the reused units containing all the model elements with nesting reference ingoing to localMe or outgoing from localMe;

49 var changedRefRus := containedMeRus->union(containedMeRus->mrFromTo->select(locallyChanged));

 -- get all the reuse units that contain model elements which reference from or to model elements in containedMeRus has locally changed;

50 var changedPus := changedRefRus->pu->select(locallyChanged);

 -- get all the locally changed product units that contains reuse units in changedRefRus

51 changedPus->ru->me->forEach(me)

52 { diffLocalRemote.ramification := diffRemote.ramification->union(diffModelElt(projId, me.uuid, localParticId, remoteParticId) }

 -- fill the ramification role of diffLocalRemote with the result of recursive calls to diffModelElts on each model element in the reuse units contained in the product units changedPus

53 return diffLocalRemote;

 -- finally, return the meDiff object constructed by the preceding sequence of operation calls

54 }

The model

2 diagrams

CU

PU (version 5)

MU (version 5)

RU (version 5)

MU (version 3)

Figure � SEQ Figure * ARABIC �7� : icons used to presents model elements and units

Figure � SEQ Figure * ARABIC �8� : Initial model (in the blessed CU)

Figure � SEQ Figure * ARABIC �9� : CU of developer A, after modification

Figure � SEQ Figure * ARABIC �10�: The CU of developer B, after the changes

Figure � SEQ Figure * ARABIC �11�: Changes commited by the developer AB, after conflicts resolution

� In this document and in the previous deliverable D2.1, we use the (albeit overloaded) word “framework” to mean an object-oriented conceptual framework made of abstract classes, interfaces and concrete classes that define general concepts. It does not constitute an architectural framework which is to be defined in WP4, based on some of these concepts.

�???

�Le D2.1 n’a pas pour objectif de définir l’architecture du framework Galaxy (seulement les concepts). C’est le rôle des livrables du WP4.

�Recursivity ?

�By a consistency concern ?

�Recursivity ?

�Cf ci-dessus

�L’argumentaire n’est pas limpide : dans la mesure où le choix de la stratégie est arbitraire, le regroupement d’élément au sein d’une même RU l’est également. On ne comprend donc pas bien ce qui justifie la récursivité de l’analyse à ce niveau.

�Pourquoi ne pas se contenter de comparer les n° de version des RU ?

�Contresens: A model element has a property a with the value 2 assigned

�Plutôt une composition…

�From e1 to e3 ?

�C'est-à-dire ? Match si version n-1 dans la repository ? Préciser.

�Figure 10

�Sur un plan syntaxique au moins…

�Figure 11

�La figure 11 montre la CU de A et non de B(d’après l’image).

�Références ?

�Et pourquoi pas plus simplement ModE = VersE ?

© Erro! Nome de propriedade do documento desconhecido. IF "" = "9" "Company DOCPROPERTY "A_Plant" * MERGEFORMAT " "Erro! Nome de propriedade do documento desconhecido." * MERGEFORMAT
Erro! Nome de propriedade do documento desconhecido.
 Erro! Nome de propriedade do documento desconhecido.. All rights reserved. Confidential and proprietary document. Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Export_Control_Text2" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Export_Control_Text3" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Export_Control_Text4" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.
This document and all information contained herein is the sole property of Erro! Nome de propriedade do documento desconhecido.. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of Erro! Nome de propriedade do documento desconhecido.. This document and its content shall not be used for any purpose other than that for which it is supplied.

	Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Natco_Box1a" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.
	Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Natco_Box2a" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Natco_Box2b" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.
	Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Natco_Box3a" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Natco_Box3b" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.
	Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Natco_Box4a" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Natco_Box4b" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.

Erro! Nome de propriedade do documento desconhecido.
Page 1 of 23

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 27 of 31

[image: image14.png]AGENCE NATIONALE DE LA RECHERCHE

[image: image15.png]Package ReifiedActionsRefsDomainbodel[gy VuDIft 1)
. . [+iocal R +ocal.] oo soa
PrimitiveValueSpec |*valLocal MaDiff mmml MeDiff + ModelEtt View ~{viewifr |~ +meShownlnLocalNotRemate
) wremote wremote +meShowninRematéNotLocal
) vaRenicte d -
0.1 ' i
0. base : [base. +mebiddenFromLocalNotRemate
) valBase 3 : . T
T g +mebiddenFronRemotehlotLocal
+shase2cal [moderAction | [ViewAction [*base2ocal :
" || |ModelRef |outtir AddedToLocalNotRemote {ordered) {ordered} * +maShowninLocalNotRemate
. outhirAddedToRemateNotLocal “basedremcte [rhasedremdte +maShowninRemoteNotLocal
T {ordered)* {ordered} T
! LouttDeletédFromLocalotRemote oot smtiddeninLocalloRencte
) . . : o T : . : +matiddeninRemotsNotLocal
outtDeletedFromRemateNotLocal T
] n ramification
d Linlir AddedToL ocalNotReriote +mrShownintocalltRemote
v B : . o : : : . : srirShownlnRemotéNotLocal
' it AddedToRemoteNiot Local T
R mrHiddenL ocalotRemote
LintiDeletedFromLocalNotRemote: erbiaderkRemotiNorLocal
g intADeletedFromReémateNotLocal

[image: image16.png]package ReifiedActionsRefsDomainhlodel|

evisionStrategy U

Galaxy
Query
Processor

Galaxy
Framework > ———|

Galaxy
Revision
- | Notification

<cuses>

| <cusex>

<cuse>>

+map(va : VuAction [1..*]) : AfAction [1.."]

+map(me : ModelEH, out pu : Productunit '], out ru : ReuseUnit ['])

+map(v : View) : MethodUnit [0..1]
+map(ad : AfDIff) : VuDIft[']

<<use>>

St

Galaxy
Model
Revision

<<usex>

InconsistencyAuditStrategy

+audit(me : ModelELt) : Inconsistency [*]
udit(v : View) : Inconsistency [']

+audi(pu : ProductUnit) : inconsistency [

| <ause>>

MergeStrategy

mergeM(med: MeDI, it me : ModeIER 0. 1, outcf: Confct) Booiean

S mergeViewt v - ViewDif, view View 0. 1] out f) - Boofsan
+mergeMu(mud : MuDIf, out mu : MethodUnt [0..1], out cf - Confict [']) : Boolean
+mergeRu(rud : RuDIff, out ru : ReuseUnit[0..1], out cf : Conflict[']) : Boolean
+mergePu(pud : PuDiff, out pu : ProductUnit[0..1], out cf Conflict [0..1]) : Boolean

[image: image17.png]GalaxyAdmin Pl o
+adser(nams: g, Sving) g
l+addProj(name : Sring. projDesor : Sting, creatorki : Sting) : Srng
Jadd E&ws&u partih Sing)
E: particH : String

)
Paric - Sting, pule Partict - t
P Sk, peler Pt - S, poleaFaen - iing)

addrush Caberparichi - Sing. pusheeFarich rng
Permres b By pusherFarich - v :’uhn?amcu oy}

<cuse>>

[o]
b Eamnmn
Rev : it :ModelBt
g st wiger 1) MaeiRer
e gl |],\n.ﬂ) Vew
m\-zmmnu smg) View it
 String, parfick : sxmg i : Sring) : hconsistency []

<cuse>>
e

GalaxyLocal RevisionHstoryA Pl [5)

 String, toRe v : hteger P.1])
: String, tagame : Strng, taghsg : Sting P 1] atRev : teger [0..1]) : T:
el g oot v new Tagtie Sengy e 011 T8
ot - Sing)
 branchName : String, branchivbg : String) : BranchTag
 String, ki : ring, toBranchid : String)
+rebas e projk : String, partck : Sirng. Wil : Sting, branchH : Sting, fromBrancht : String, ontoBrancht : tring)

<use>>

GalaxyRevisionNotific ationd PI [3)

: String, fromParticH : String, toParticH : String, commiti] : Sir;xg)

1 . fomPartick : Stng, toParicki : Sting. tag
:sma U : String, fromPartick : Srng. toParticki : St ; gt :Sing. new Tagheme : g)
ey Biing, tbranchi : Sting P.1]): LockTag

Sthg, famParl ; Syng.oPaiteH ; Sting.ag
4 ffomPartch: Sting, forPartic : Sng. e
Wit Seig.FomPartis Seig. ABranchD - Sring

<cuse>>
s

GalaxyModel RevisionA PI [3)

: String, wi
 Sting, vu : Versioning Lht [0..1], EiTrace : VuAot

- String, romPartct - m';memu:ﬁu svh?'ﬁ 1. I’F:n s'mgp "o beger p.11)
. w ithBranchid : Sring, out - Error [1) : Bookan

 String, fromParti Tagh : String P..1]) : B

String, hﬁmm;:;'w) ing P..1]) : Bror []

scuse» |

[image: image18.png]oo FoA e Dororia B cormunt

e RS
@ s

e S e W S e v
oo - Sy o

i

Aot

Composimiriatoc

o — esa i Sung o Sug)
e At S

e Compaaer

3 S torpan sung. S0 ST Sngo. 1) A]

[image: image19.png]package ReifiedA ctions RefsDomanhbdel [| Artefact]

[CompositeA rtefact Maneion |
x {subsets n} {subset k)
. +cortanerPu nes tedPu 1.7[rpua 1.0
inv: (I = nes te dPu->union(ru) >union(mu)) +pu- (ordere | {orderedy
and (nestedPu->inters ection) inters ection(mu)->s Empty0) | — ‘— jier=tok (ordered
+clone() : ProductUnit
i withPuld : Sting) : PUDHY
RuAction Model Action dmaft
: |:¢ | . . — ; JI prervs—— : Mathod Ut
{ordered) (subs et) ImetaRet ew)
Hull " 1y +me |1 +instance| * 1| +/metaClass ~ *| +me
[t ModelBt VersioningUnit 3R A S : oA
+addMe(me : ModelBt) iy hii)
+mhde me : WodelER) 7] HimetaClass Name : String A
+mov ebie(me : WodelB, to : Reus eUnit) +addia(ma : Atiibute)
+addMi(v : ModelRef) +/contained *|+1mia(ma : Atrbute) +view 1.7
-+ e ModelRef) +moveba ma : Atibute, to: ModelEt) View
:x-‘o:(g:»::ﬂu.m:muﬂm) H'MM o lone) - odeet P +focalyChanged : Boolean [:
: Reus. +lcontainer : String) : MeDiff +view pointName : Stri
+dif(w ithRuld : Sting) RuDIf R WM : Stiing) |+hematelyChanged : Boolean| pointhame : Sting
*+imeFromTo m‘wlﬁ(m ModelBt)
- 0.1 +under vien *
1| 1 r—r} " +showsEl #shownin_*/ 'shanlb(iv Atribute)
| vongey [ssoucery [T hduktr Atbide)
arget|1 1 +source e
+internali| +inGonght| | +outGoinght +me |1 T hownin | +dffl wthView!d : String) : View DFf
el e I Bl wvostane .] B
peier= ranonm] view [1
iy — emalashawsag|* (orderedy
+nesting: Baclean : - -
+cross Pu: Boolean Auibse el vwalt. :
+cross Ru Bookan L cureadi +uuid:Sting . . : Wew ViewA ction
+crass OmgLevel - Boolean : +imetadelame : Strng Pum
+metaP ophame : String +addhia mav PrmtiveValueSpec).
+moveSource delEt) +1mhlav(mav : Primiti eV alueSpec) m
+moveTarget(to: ModelBt) +clone()
© SmetaAR 1|+ wihlald : Sting) : MaDif . .
View!
0 B Pt
o] |

+ypel1

[Primitive
Type |

Ve 'm;nwml . .

{incormplete, disjoint)
omicAtefact

[image: image20.png]pu0

Developer A

[image: image21.png]Blessed

[image: image22.png]Developer B

[image: image23.png]pu0

Developer A

