[image: image1.jpg]

[image: image16.wmf]

	Erro! Nome de propriedade do documento desconhecido. IF = "N" "" Erro! Nome de propriedade do documento desconhecido. * MERGEFORMAT
Erro! Nome de propriedade do documento desconhecido.

Erro! Nome de propriedade do documento desconhecido.
	Erro! Nome de propriedade do documento desconhecido. IF = "" "" "ORIGIN " * MERGEFORMAT
ORIGIN
Erro! Nome de propriedade do documento desconhecido. IF = "" "" "Erro! Nome de propriedade do documento desconhecido." * MERGEFORMAT
Erro! Nome de propriedade do documento desconhecido.

	Erro! Nome de propriedade do documento desconhecido. IF = "" "" "PROJECT " * MERGEFORMAT
PROJECT
Erro! Nome de propriedade do documento desconhecido. IF = "" "" "Erro! Nome de propriedade do documento desconhecido." * MERGEFORMAT
Erro! Nome de propriedade do documento desconhecido.

	
	REFERENCE Erro! Nome de propriedade do documento desconhecido.
ISSUE Erro! Nome de propriedade do documento desconhecido.
	DATE Erro! Nome de propriedade do documento desconhecido.

	Galaxy
	[image: image15.png]AGENCE NATIONALE DE LA RECHERCHE

	[image: image33.png]ragnaide] o] v

ro

o

g
v

£

sognes |

o T

T

[CTrEE
" g

e

RS
+ xaLog
U

=

a - ng

TV?&fW

Galaxy : Developpement collaboratif de systèmes complexes

selon une approche guidée par les modèles

Deliverable D2.1: Collaborative Unit Definition

	
	NamE
	partner
	Date

	Written by
	J. Robin
	LIP6
	

	
	X. Blanc
	LIP6
	

	
	
	
	

	Reviewed by
	Y. Bernard
	Airbus
	

	
	F. Racaru
	Akka
	

	
	B. Coulette
	IRIT
	

	
	P. Vlaeminck,
	Softeam
	

	
	F. Reynaud
	Softeam
	

	
	
	
	

	
	
	
	

	
	
	
	

Record of Revisions

	Issue
	Date
	Effect on
	Reasons For Revision

	
	
	Page
	Para
	

	01A
	
	
	
	Création du document

	
	
	
	
	

Table of contents

131.
Introduction

162.
Approach: MDE and separation of conCERNS

173.
Definition of the Collaborative Unit

203.1
Class Named ENTITY

203.2
Class Galaxy Framework

203.2.1
Definition

233.2.2
Properties

233.3
Class Project

233.3.1
Definition

233.3.2
Properties:

233.4
Class PARTICIPANT

233.4.1
Definition

243.4.2
Properties:

243.5
Association Class Collab Unit

243.5.1
Definition

243.5.2
Properties:

253.5.3
Components

253.5.4
Operations

303.6
ABSTRACT Class History Unit

303.6.1
Definition

303.6.2
Properties

313.7
ABSTRACT Class Revision Unit

313.7.1
Definition

313.7.2
Properties

323.8
Abstract Class Artifact

323.8.1
Definition

323.8.2
Properties

323.8.3
Operations

333.9
Abstract Class Atomic Artifact

333.10
Abstract Class Composite Artifact

333.10.1
Definition

333.10.2
Properties

333.10.3
Operations

343.11
Class Commit

343.11.1
Definition

343.11.2
Properties

353.11.3
Operations

353.12
Abstract Class AfDiff

353.12.1
Definition

353.12.2
Properties

363.12.3
Operations

363.13
Abstract Class AFAction

363.13.1
Definition

363.13.2
Operations

363.14
Class Tag

363.14.1
Definition

363.14.2
Properties

373.14.3
Operations

373.15
Class Branch Tag

373.15.1
Definition

373.15.2
Properties

373.15.3
Operations

373.16
Class Lock Tag

373.16.1
Definition

373.16.2
Properties

373.16.3
Operations

384.
Definition of views and model fragmentation mechanisms

384.1
How to structure model elements and views on them for revision control purposes?

414.2
Class Model Elt

414.2.1
Definition

414.2.2
Properties

424.2.3
Operations

424.3
Class Attribute

424.3.1
Definition

424.3.2
Properties

424.3.3
Operations

434.4
Class Model Ref

434.4.1
Definition

434.4.2
Properties

434.4.3
Operations

444.5
Class View

444.5.1
Definition

444.5.2
Properties

444.5.3
Operations

454.6
Class Method Unit

454.6.1
Definition

454.6.2
Properties

454.6.3
Operations

454.7
Class Reuse Unit

454.7.1
Definition

454.7.2
Properties

464.7.3
Operations

464.8
Class Product Unit

464.8.1
Definition

464.8.2
Components

474.8.3
Properties

474.8.4
Operations

475.
Actions to Execute during the collaborative unit life cycle

526.
Controlling the collaborative unit lifecycle from an MDE CASE tool

536.1
Approach: decoupling and separation of concerns

536.2
The Galaxy Query API

546.3
The Galaxy Admin API

556.4
The Galaxy Local Revision History API

556.5
The Galaxy Revision Notification

556.6
The Galaxy Model Revision API

566.7
The galaxy classes realizing the galaxy APIs

587.
An example of collaborative unit lifecycle

597.1
Configuring the collaborative workflow among galaxy users

627.2
Step 1: blessed repository gatekeeper creates first version of the model, publishES it and the collaborators clone it

647.3
Step 2: conflict free concurrent revisionS of the model by collaborators

687.4
Steps 3 conflicting concurrent revisionS of the model by collaborators

807.5
Step 4 blessed collaborative unit GATE KEEPER DELEGATES ERROR RESOLUTION by creating branches and publishING them

857.6
Step 6 one collaborator merges design choices from both branches into one, deletes the other and publishES it

877.7
Step 7: Collaborator agrees with changes made by the other

877.8
Step 8 blessed collaborative unit owner creates release1.0 I

917.9
Conclusion on the galaxy framework usage script

918.
An example of model fragmentation STRATEGY

1009.
WHEN is A strategy Scalable?

1009.1
Definition

1019.2
Theoretical Scalability

1029.3
Pragmatic Scalability

1039.4
Example

1039.4.1
Theoretical scalability

1049.4.1
Pragmatically scalability

10410.
References

Table of APPLICABLE DOCUMENTS

	N°
	title
	Reference
	Issue
	Date
	Source

	
	
	
	
	
	Siglum
	Name

	A1
	
	
	
	
	
	

	A2
	
	
	
	
	
	

	A3
	
	
	
	
	
	

	A4
	
	
	
	
	
	

Table of ReferenceD DOCUMENTS

	N°
	title
	Reference
	Issue

	
	
	
	

	R1
	Galaxy glossary
	
	

	R2
	
	
	

	R3
	
	
	

	R4
	
	
	

ACRONYMS AND DEFINITIONS
Except if explicitly stated otherwise the definition of all terms and acronyms provided in [R1] is applicable in this document. If any, additional and/or specific definitions applicable only in this document are listed in the two tables below.
Acronymes
	Acronym
	DESCRIPTION

	
	

	
	

	
	

	
	

Definitions

	TERMS
	DESCRIPTION

	
	

	
	

	
	

	
	

1. Introduction

This document presents D2.1., i.e. the first deliverable of the second work package of the project. The goal of this deliverable is to provide a general, high-level specification of the concept of collaborative unit in large scale model-driven software engineer projects.

The in scope of this specification was defined in the deliverable D0.1.1. (Project Presentation) which states three main tasks for D2.1.

1. Definition of the model fragmentation mechanism: The management of huge models needs a model fragmentation mechanism; this mechanism must allow project participants to work only on small model fragments relevant to their current task, while insuring the consistency of the overall model from which these fragments are extracted and then merged; section 4 defines such a mechanism; section 8 presents a concrete example of its application;

2. Definition of user workspace: in the context of model driven collaborative development, each developer works on its own workspace composed only of model elements that are relevant for him; section 4 defines the concept of workspace and its relationship with model and model fragment;

3. Definition of collaborative unit life cycle: a collaborative unit is the data structure that underlies the storage of model fragments and views; section 3 defines the collaborative unit and its operations; section 5 and 6 define its life cycle, i.e., how calls to its operations affect its states and vice-versa; section 7 gives illustrative examples of collaborative units and collaborative uni lifecycles.
What is meant in practice by the adjective “huge” in the above description was quantitatively estimated in deliverable D1.1. It mentions models developed by up to 150 collaborators and comprising up to 1400 distinct entities and 5500 relationships among these entities. D1.1. also suggests five metrics for collaborative MDE: (a) the persistent storage space requirement for the model revision history, (b) the message size for the model revision synchronization operations, (c) the computer processing time for the automated model revision control operations such as commit, update or branch, (d) the human processing time for manual model revision control operations such as semantic conflict resolution and (e) the number of project participants. The relation between the model size metrics and the collaborative unit scalability metrics is not direct. It involves other mediating factors. The first is the data format adopted for model persistent storage and update messages (e.g., XMI [13] files vs. Praxis fact files [4] [15]) which defines how many bytes are needed to store each model element and model element reference. The second factor is the metamodel(s) of the modeling language(s) used to represent the model entities and relationships. This metamodel allows estimating the number of model elements and model element references, per domain model entity and model element relationship
. The third factor is the number of distinct views
 that needs to be maintained for a given model in the galaxy, since each view involves storing, exchanging and processing additional metadata that stacks on top of model data. The fourth factor is the number of modification steps registered in the model history executed during the model development history, since it is the whole model revision history that needs to be stored and processed by collaborative units, not merely the current state of the model. The fifth factor is the usage patterns of model revision control operations, defined as the relative frequency of calls to commit, diff, revert, update, branch, merge, tag, etc.
In addition to potential for scalability, another requirements for the collaborative unit specification presented in this document precise enough to constitute a well-founded basis for subsequent project deliverables of WP2 (conceptual model of model-driven collaborative development) and WP4 (distributed work support prototype) that reuse D2.1 as starting point. Versatility is needed to make sure that the proposed concept of collaborative unit will apply to a wide spectrum of large scale industrial MDE projects. Only then will the Galaxy project makes a significant contribution to MDE in general, and not merely to one of MDE numerous very specific niches.

To achieve such versatility the collaborative unit concept needs to be sufficiently generic and abstract so as to as remain independent as possible from specific:

· Modeling languages (e.g., UML, SysML, Petri nets, DLSs (Domain Specific Languages);

· Model-driven software processes (e.g., RUP[11], KobrA [1]);

· Revision control workflow (e.g., centralized with remote commit, centralized with local commit, decentralized with shared mainline, decentralized with human gatekeeper, decentralized with hierarchy of human gatekeepers [7], etc.);

· Revision control repository deployment (e.g., unique central server vs. P2P);

· Persistent data structure (e.g., XMI files vs. Praxis action fact files vs. relational DB table vs. Eclipse Modeling Framework (EMF) [19] objects persistent on Google’s cloud);

The out of the collaborative unit specification was defined in the Project Presentation deliverable D0.1.1., which states three main tasks for later tasks in the Galaxy project that take D2.1. as starting point. D2.1 therefore does not cover the precise definition of the three main point of T2.2, which are:
· Collaborative Unit Diff: the mechanism that will compute differences between collaborative units;

· Collaborative Unit Merge: the mechanism that will compute the merging between collaborative units;

· Balancing the collaboration strategy: means to relax safety collaboration constraints, and to set the collaboration level regarding safety and flexibility requirements.
D2.1 also does not cover the precise definition of:

· model views which is in the scope of T3.1.;
· the specification of the open and flexible architecture, which is within the scope of T4.1;

· the core API of the Galaxy framework, which is also within the positive scope of T4.1;

· project participant roles within the process used for a development project, which is within the scope of T2.3.

· However, with the intent to serve as a rich starting point for these tasks, D2.1 does define abstract and/or basic versions of these concepts to be elaborated in the appropriate subsequent project tasks
2. Approach: MDE and separation of conCERNS
Following an MDE approach to the elaboration of the present report, we use UML2 diagrams to define and illustrate the concept of Collaborative Unit. Each diagram is accompanied by a text in natural language. This text explains the semantics of the model elements appearing in the diagram together with the motivation for the particular design that it embodies. Each of the next four chapters presents and explains a set of class diagram that focuses on a single concern. Section 3 focuses on the concern of persistent data structures and operations to scalably and collaboratively revises any sort of software artifacts whether following an MDE or code-driven approach. This is where the concept of collaborative unit is introduced. Section 4 focuses on the concern of defining model fragments of intermediary grains between, on the one hand, the macro-grain of the whole project megamodel that integrates all the software project models, and, on the other hand, the micro-grain of individual model elements, and diagrams
. This section introduces three distinct types of medium grain fragments: product unit, reuse unit and method unit. Section 5 focuses on defining a minimal set of primitive model and view revision actions in term of which any model or view manipulation can be ultimately decomposed. Section 6 focuses on showing how the galaxy framework data structures defined in the three preceding section allows providing to MDE CASE tools external revision control services through five simple interfaces. This section introduces the important concept of revision strategy, which defines how revision actions on model elements and views executed by a developer in a CASE tool, are to be translated into revision actions on the product units, reuse units and method units that group these elements and view for scalable revision control purposes. The definition of a revision strategy for a particular class of projects will be the key design task of project infra-structure staff to leverage the galaxy framework to implement the revision control environment of an MDE software project. Section 6 closes the presentation of the galaxy collaborative unit and framework domain model.

The subsequent sections validate this domain model by presenting an illustrative example of its use on a script in which three developers collaborate to construct a simple UML class diagram. Section 7 follows the step-by-step evolution of this diagram in the collaborative units of these three developers from the construction of its initial version to its freezing as a first preliminary release. Each step contains the model edition and revision control action sequence executed by each developer using a CASE tool connected to an instance of the galaxy framework. It thus provides an external, project artifact developer view of such framework instance. In contrast, section 8 defines an internal view of the framework relevant to the project infrastructure support staff that will configure it for a specific project. It defines a simple revision strategy, specific to UML modeling. It then shows two snapshots of the product unit, reuse unit and method unit data structures that represent the model and associated diagrams “under the-hood” of a revision control environment, instance of the Galaxy framework, and which implements the strategy. These two snapshots respectively correspond to the product, reuse and method unit states before and after one of the eight revision steps shown in the preceding section. These snapshots are represented by UML object diagrams.
3. Definition of the Collaborative Unit
The collaborative unit allows development project participants to collaboratively construct and revise any artifacts to produce at any phase and step of the project. The PIM of the collaborative unit that we propose is given in Figure 1. In essence, it is a workspace in a Revision Control System (RCS) (see section 3.4 of Galaxy deliverable D1.2 for a definition and review of such systems), since it must provide the same services:

1. History recording: keeps track of who made which revision to what artifact(s) when and with what purpose;

2. Revision roll back: allows seamless backtracking to past revisions of any artifact;

3. Branch handling: allows efficient forking and subsequent merging of concurrent development branches

4. Artifact comparison (often called diff): point out the differences between two artifacts, generally with respect to a third artifact from which the two being compared independently evolved;

5. Error detection: identify the problematic cases of artifact differences.
The collaborative unit concept corresponds to both the local workspaces of an RCS deployed on the machine of a project participant, and the centralized workspace of an RCS that serves as unique reference from which to update the local workspaces and to which commit changes from local workspaces. We define error as a concept that subsumes both conflicts and inconsistencies. A conflict occurs when two model fragments, views or artifacts cannot be automatically merged by the simple union of the nodes and edges from the labeled directed graphs that (respectively) represent them. This is the case for example if the name of the same model element in both fragment is different (i.e., incompatible property value) or if an the origin or destination node of an edge in one fragment has been deleted in another (i.e., a dangling link). A successful automatic merge may result in a well-formed graph which nonetheless contains some inconsistencies.

[image: image2]
Figure 1: The concept of galaxy collaborative unit

Such inconsistency occurs when the particular combination of labels in the merged graph violates constraints from the model fragment’s metamodel, from some design pattern that the software process requires to follow, etc. Since a precise taxonomy of errors is intimately linked to the concepts of automatic merge and diff between two model fragments, views or artifacts, it will be presented together with the definition of these related concepts in the next deliverable D2.2 that focuses on these issues.

In the next paragraph, we explain the semantics of each class in the diagram of Figure 1 in one subsection.
3.1 Class Named ENTITY
An abstract class generalizing all classes with the attribute name, i.e., Project, Participant, HistoryUnit, AfDiff and AfAction.
3.2 Class Galaxy Framework

3.2.1 Definition

An abstract object-oriented framework of which concrete instantiations provide revision control services for large-scale collaborative MDE projects. The collaborative unit defined in [image: image3]
Figure 1
 is the main concrete class of the Galaxy framework. As shown in Figure 8, a Galaxy framework assembles other classes beyond the collaborative units, notably the revision strategy. A revision control system for MDE based on the Galaxy project implements a given Galaxy framework instance. All such instances share instances of the same general-purpose concrete collaborative unit class. In contrast, each specific instance of the framework assembles instances of a specific concrete specialization of the abstract class revision strategy.Therefore , a particular Galaxy revision systems results from assembling collaborative units with a particular revision strategy. This way, the revision strategy can be customized to the specific revision control needs of a specific class of projects in order to ensure the scalability of the revision control services provided by the Galaxy framework instantiation for those projects.
3.2.2 Properties

· pj: the projects under revision control using a Galaxy framework instance;
· pa: the participants of the projects under revision control using a Galaxy framework instance;
· url: the web address to access the administration services of a Galaxy framework instance.
3.3 Class Project

3.3.1 Definition

An MDE project under revision control using a galaxy framework instance.

3.3.2 Properties:

· gf: the galaxy framework instance providing revision control for the projet

· creator: the galaxy framework user who created the project;
· pa: the participants of the project.

· client: an MDE project that is reusing a model built in another MDE project as model component;
· server: an MDE project providing a model component for other MDE projects.
3.4 Class PARTICIPANT

3.4.1 Definition

A participant to an MDE project under revision control using a galaxy framework instance.

3.4.2 Properties:

· gf: the galaxy framework instance providing revision control for the projects to which the participant takes part;

· created: the projects created by the participant;
· pj: the projects to which the participant takes part through the galaxy framework instance;
· co: the trace of the commit actions performed by the participant;

· tg: the tags put by the participant on commit objects;

· lt: the locks on commit objects that the participant currently holds.
3.5 Association Class Collab Unit

3.5.1 Definition

A local workspace owned by one project participant storing the artifacts of one collaborative MDE project relevant to the participant. We make the simplifying assumption that if a participant takes part to multiple projects using the same galaxy framework instance for revision control, it owns one distinct collaborative unit per project to which (s)he takes part. The notion of collaborative unit is purely conceptual. It is thus neutral with respect to the specific collaborative workflows, artifact persistence technology and its deployment over a network. Consequently, is can model either a local workspace in a centralized RCS such as svn, or a local repository in a distributed RCS such as git, hg or bzr.
3.5.2 Properties:

· url: the web address that serves as entry point to the galaxy;
· blessed: a boolean indicating that the collaborative unit plays the role of central reference repository in a centralized copy-revise-merge collaborative workflow; when this is the case, all non-blessed collaborative units synchronize their respective revision only with a single blessed collaborative unit and not directly among themselves; a separate synchronization network among several blessed collaborative units can also be independently set up to insure the redundancy needed for continued and responsive service in the occurrence of node and/or connection downtime;
· pj: the project for which the collaborative unit was created;
· pa: the galaxy framework instance user owning the collaborative unit;
· pusher: the set of remote collaborative units allowed to send artifact change notifications to the host collaborative unit (using the publish operation);
· pushee: the set of remote collaborative units to which the host collaborative unit is allowed to send artifact change notification (using the publish operation);
· puller: the set of remote collaborative units allowed to pull updates of their artifacts from those stored in the host collaborative unit (using the update operation);
· pullee: the set of remote collaborative units from which the host collaborative unit is allowed pull updates of its artifacts (using the update operation);
· origin: the remote collaborative unit from which the initial revision of the artifacts were copied into the host collaborative unit artifacts were (using the clone operation); becomes the default source for subsequent update operations;
· localBt: a set of pointers to the development branches whose artifacts might have been locally changed since their last updates from a remote collaborative unit;
· localMain: a pointer, member of localBt, to the branch that holds the main development trunk of the project;
· head: a pointer, member of localBt, to the branch containing the artifacts that have been checked out for edition by the client application of the host collaborative unit;
· remoteBt: a set of pointers to untouched copies of the branches pointed to by localBt as they were at the time of their last update from a remote collaborative unit;
· remoteMain: a pointer to an untouched copy of the main development branch as it was when it was last updated from a remote collaborative unit.
3.5.3 Components

Class HistoryUnit (see section 3.6). The information units of a collaborative unit are the artifacts of project pj relevant for participant pa, together with the meta-data used to control their revision.
3.5.4 Operations

3.5.4.1 clone(afId: String, fromCuUrl: String, atTagId: String, atRev: Integer)

Copies to the host collaborative unit a copy of the artifact which uuid = afId, pointed to by the commit object with revision number atRev and tagged by the tag which uuid = atTagId inside the remote collaborative unit located at the web address fromCuUrl. It addition to the artifact itself, it also copies the versioning meta-data about the artifact stored in the above mentioned commit and tag objects; the remote collaborative unit then fills the host collaborative unit’s origin property; This operation is allowed only if the host collaborative unit has been previously added to the puller property of the remote collaborative unit which url = fromCuUrl. Clone is realized by calls to the operation of the same name on the artifact objects and artifact revision meta-data objects (instances of classes HistoryUnit and Diff) contained by the host collaborative unit.

3.5.4.2 commitl(afId: String, msg:String, afas: AfAction[*]): Commit

Commits to the local collaborative unit cu the new revision of the artifact af with uuid = afId. afas corresponds to the canonical sequence of artifact revision actions (defined in section 3.13) needed to apply to the latest revision of one stored in cu
obtain af. Commitl first creates a copy of af. It then creates a new commit object co pointing to this new copy. It then makes the head branch points to co as the updated tip of its revision history. It returns co.
3.5.4.3 commitg(afId: String, msg:String, afas: AfAction[*], fromPaUrl: String, toCuUrl: String): Error[*]
Commits to a blessed collaborative unit bcu with url = toCuUrl the new revision of the artifact af with uuid = afId. Commitg first checks whether the host collaborative unit’s participant is the author of the last commit for af on bcu.. If it is the case, commitg first creates in bcu a copy of af. It then creates in bcu a new commit object co pointing to this new copy. It then makes the head branch in bcu point to co as the updated tip of its revision history and returns an empty error list. If the participant pa1 who last committed a revision af1 of af to bcu is not the host collaborative unit’s participant, commitg it then calls merge taking as arguments afId and the head branch id at bcu..
3.5.4.4 merge(afId: String, withBtId: String): Error[*]

Attempts to automatically merge the latest revision of artifact which uuid = afId in the head branch of the host collaborative unit, with the revision of the same artifact in the branch which uuid = withBtId. If they are not automatically mergeable, it leaves the two revisions unchanged and returns the conflicts that caused the merge failure. If the two revisions are mergeable, it then calls the audit operation on the artifact resulting from the successful merge. If the audit reports at least one inconsistency, it leaves both revisions of the input artifact unchanged, and returns the inconsistencies returned by the audit. If the audit reports no inconsistency, it creates a new commit object co having two fillers for its previous property: the commit node at the tip of the head branch before the call to merge, and the commit node at the tip of the branch with uuid = withBtId. It then fills the tip property of the head branch with co. This general merge operation on two arbitrary artifacts is realized by calls to specific merge operations on product units, reuse units, method units, views, model elements, model element references and model element attributes. As shown in Figure 8, these specific operations are abstract. It is their specializations in concrete operations with the same signature that define the merge strategy of a specific galaxy framework instance.
3.5.4.5 audit(af: Artifact): Inconsistency[*]

Audits artifact which uuid = afId and returns the inconsistencies that it contains (if any).
3.5.4.6 update(afId: String, fromCuUrl: String, atTagId: String, atRev: Integer): Error[*]

Firts fetches the revision of artifact which uuid = afId pointed to by the commit object of revision number atRev and tagged by the tag which uuid = atTagId in the remote collaborative unit located at web address fromCuUrl. The calls merge with afId as afId paramenter and atTagId as btId parameter.
3.5.4.7 revert(afId: String, toRev: Integer)

Backtracks to revision number toRev of the artifact which uuid = afId. Just changes the current branch tip so that it points to the commit object of revision number toRev.

3.5.4.8 tag(afId: String, tagName: String, msg: String, atRev: Integer): Tag
Creates in the host collaborative unit a new tag object named tagName with message msg to the commit object with revision number atRev for artifact which uuid = afId. Adds only a simple tag, such as a release tag. Does not work properly for branch and lock tags.
3.5.4.9 renameTag(afId: String, tagId: String, newTagName: String)
Changes to newTagName, the name of the tag which uuid = tagId for artifact which uuid = afId.
3.5.4.10 addBranch(afId: String, btName: String, msg: String): BranchTag

Creates in the host collaborative unit a new development branch named btName with message msg for the artifact which uuid = afId. Creates a new branch tag object which tip points to the commit object already pointed to by the current branch;

3.5.4.11 delBranch(afId: String, btId: String)

Deletes from the host collaborative unit the branch tag object which uuid = btId for artifact which uuid = afId. Depending on the memory management policy adopted may also trigger deletion of all the objects accessible from the tip property of the deleted branch object by recursively following the previous, af, diff and ea properties of commit objects.

3.5.4.12 switchTo(afId: String, btId: String)

Switches the head property of the host collaborative from its current value to the branch object which uuid = btId for artifact which uuid = afId.

3.5.4.13 rebase(afId: String, btId: String, fromBtId: String, ontoBtId: String): BranchTag

Linearizes three branches for artifact which uuid = afId in the host collaborative unit into two in order to make past development history easier to follow. First finds the commit object coBase from which the branch which uuid = btId diverged from the branch which btId = fromBtId. Then replays the artiact actions associated to all commit objects between coBase and the tip of btName onto the tip of a third branch which uuid = ontoBtId. Finally deletes the branch btId which is then no longer needed. Repeated calls to this rebase operation allows to fully linearize a very branchy, hard to follow development history with a lot of trials and errors into a simpler, neat, linear one. Introduced by Git, this rebasing concept has since then been adopted by other DRCS such as Mercurial and Bazaar.

3.5.4.14 publish(co: Commit, toCuUrl: String)

Notifies the remote collaborative unit at web address toCuUrl that a new commit object co has been added to the host collaborative unit. Requires the target remote collaborative unit to be registered as pushee of the host collaborative unit.

3.5.4.15 publishTag(tg: Tag, toCuUrl: String)

Notifies the remote collaborative unit at web address toCuUrl that a new tag object tg has been added to the host collaborative unit. Requires the target remote collaborative unit to be registered as pushee of the host collaborative unit.
3.5.4.16 publishRenameTag(afId : String, tagId : String, newTagName : String, toCuUrl : String)
Notifies the remote collaborative unit at web address toCuUrl that the tag object which uuid = tagId had been renamed newTagName in in the host collaborative unit. It requires the target remote collaborative unit to be registered as pushee of the host collaborative unit.
3.5.4.17 publishDelTag(afId: String, tagId: String, toCuUrl: String)

Notifies the remote collaborative unit at web address toCuUrl that the tag which uuid = tagId has been deleted from the host collaborative unit. It requires the target remote collaborative unit to be registered as pushee of the host collaborative unit.
3.5.4.18 lock(afId: String, atBtId: String, forCuUrl: String): LockTag

Locks the artifact which uuid = afId at the tip of the branch which uuid = atBtId, for exclusive changes by participant whose collaborative unit web address is forCuUrl. First creates a lock tag object lt in host collaborative unit that points the latest commit object for the artifact. In a centralized setup, lock then calls publishTag with lt as parameter to notify the single blessed collaborative unit of the lock. In a decentralized setup, lock then notifies all the collaborative units registered as pushees of the host collaborative unit of the lock. Upon reception of this lock notification, these pushees in turn notify their pushee, thus triggering a recursive propagation of the lock throughout the whole galaxy. This distributed version works properly only if all the galaxy collaborative units for a given project are reachable from any other galaxy collaborative unit for that project through pushee, pusher relationships. Calling lock is only permitted when the commit object which points to af in the host collaborative unit it itself free of lock tag.

3.5.4.19 unlock(afId: String, atBtId: String)

Unlocks the artifact af which uuid = afId at the tip of the branch which uuid = atBtId. First deletes the lock tag in the host collaborative unit that points to the latest commit object for the artifact. In a centralized setup, lock then calls publishDelTag with lt as parameter to notify the single blessed collaborative unit of the lock release. In a decentralized setup, lock then notifies all the collaborative units registered as pushees of the host collaborative unit of the lock release. Upon reception of this lock release notification, these pushees in turn notify their pushee, thus triggering a recursive propagation of the lock release throughout the whole galaxy. This distributed version works properly only if all the galaxy collaborative units for a given project are reachable from any other galaxy collaborative unit for that project through pushee, pusher relationships. Calling unlock is only permitted when there is a lock tag on the commit object pointing to af in the host collaborative unit.

3.6 ABSTRACT Class History Unit
3.6.1 Definition

An abstract class that generalizes the three main classes of objects used to store artifact revision history in a collaborative unit (1) Revision unit for project data, and (2) Commit and Tag, for revision control metadata.

3.6.2 Properties

· uuid: a string allowing to identifying uniquely all the revisions of the same HistoryUnit objects in distinct collaborative units of the galaxy, even if they differ in terms of content;
· hash: a string allowing rapid indexing and (almost) uniquely identifying HistoryUnit objects in the whole galaxy by their content;
· size: number of memory bytes occupied by the HistoryUnit object;

3.7 ABSTRACT Class Revision Unit

3.7.1 Definition

An abstract class that generalizes all project data under revision control (versioning). Our first general assumption is that a modeling team may wish to version model elements and model views. This is why RevisionUnit generalizes the concrete classes ModelElt and View. Exactly which class of model elements and model view should be versioned depends on a specific modeling language, MDE process and CASE tool connected to an instance of the galaxy framework. It is during the instantiation of the framework that RevisionUnit can be constrained to generalize not all instances of ModelElt and View but only restricted subclasses of them. model elements, model views and the artifacts storing them in collaborative units (see section 4). The revision number of model elements and views are derived from the artifacts containing them that are persistently stored in collaborative units and exchanged among them for synchronization. In turn, the revision number of any such artifact (project data) is derived from the revision number of the commit object (project history metadata) that is created when the artifact is committed to the collaborative unit.
3.7.2 Properties

· uuid: a string allowing to identifying uniquely all the revisions of the same RevisionUnit objects in distinct collaborative units of the galaxy, even if they differ in terms of slots;
· hash: a string allowing rapid indexing and (almost) uniquely identifying RevisionUnit objects in the whole galaxy by their slot content.
· mutable: a boolean indicating whether the artifact is read-only or can be altered; in the MDE context, example of non-mutable artifacts, from the perspective of an application developer, include the classes forming the meta-model of the model under construction, the built-in architectural framework that this model specializes or the built-in types provided by the modeling language;
· locallyChanged: a boolean that is true iff the revision unit has been locally modified since it was last committed (either locally using commitl, or globally using commitg) or updated;
· remotedChanged: a boolean that is true iff the revision unit has been modified in a remote collaborative unit, since it was last committed in, committed to or updated to the local collaborative unit; the local collaborative can know about such change only if it was carried out in a remote collaborative unit of which it is a puller; in centralized mode, all collaborative units are puller of a blessed collaborative unit;
· conflicted: a boolean which is true iff the last update attempt from a remote collaborative resulted in at least one conflict;
· published: a boolean which is true iff the artifact has been published by the owner of the collaborative unit where it is stored, so that other project participants can update their own copy of this artifact in their collaborative units with this more recent revision; committing an artifact while not publishing it allows an artifact to be persistent while remaining private to a given collaborative unit;
3.8 Abstract Class Artifact
3.8.1 Definition

Any artifact constructed during a software project, whether it be a natural language document, a code file or a model that follows a meta-model. Due to its genericity, we model this concept as an abstract class.

3.8.2 Properties

· url: the web address where the artifact is stored;
· localPath: the tail of the url that starts after the url of the collaborative unit where the artifact is stored;
· prevRev: pointers to the previous local revisions of the artifact in the collaborative unit (if any);
· nextRev: pointer to the next local revision of the artifact in the collaborative unit (if any);
· co: the commit object that points to the artifact;

· fromRev: the diff between the artifact and its previous revision (if any);

· toRev: the diff between the artifact and its next revision (if any).
3.8.3 Operations

· diff(withAfid: String): AfDiff[*]: returns all the differences between the host artifact and the argument artifact; an abstract operation that must be specialized into a concrete one, for each different concrete subclass of the abstract class artifact; these specializations are beyond the scope of D2.1 and will be defined in the D2.2;
· clone(): Artifact: returns a copy of the host artifact; an abstract operation that must be specialized into a concrete one, for each different concrete subclass of the abstract class artifact;
3.9 Abstract Class Atomic Artifact
An artifact that does not contain any other artifact. A leaf in the artifact containment tree.

3.10 Abstract Class Composite Artifact
3.10.1 Definition

An abstract subclass of Artifact that contains other artifacts. Form a complete and disjoint generalization set of Artifact with AtomicArtifact. Together, these three classes follow a composition pattern that models a containment tree. That they are structured in such tree is the only assumption made about artifacts at the level of the collaborative unit. This design choice is motivated by the pervasiveness of such structure in MDE CASE tools, file systems and XML documents. In an MDE CASE tool, model elements are structured in such tree following the composition meta-associations of the meta-model. The nesting of elements in XML documents also follows this containment pattern. File systems are similarly structured with the individual files being the atomic artifacts and the folders being the composite artifacts.

3.10.2 Properties

· ls: a pointer to the artifacts directly contained by the composite artifact (i.e., nested at level 1);
· lsr: a pointer to all the artifacts nested in the composite artifact, whether contained at its top-level (i.e., nested at level 1) or recursively contained in one of its nested composite artifacts (i.e., nested at any level (1);
3.10.3 Operations

· add(afId: String): nests a new artifact of uuid = afId inside the composite artifact;
· del(afId: String): deletes the artifact of uuid = afId from the composite artifact;
· move(afId: String, fromPath: String, toPath: String): moves nested artifact of uuid = afId inside the host composite artifact containment tree from being a direct child of nested composite artifact of uuid = fromPath to being a direct child of nested composite artifact of uuid = toPath;
3.11 Class Commit

3.11.1 Definition

A snapshot node, in the revision history, of an artifact stored in a collaborative unit. One object of this class is added to the revision history each time a new version of the artifact is committed to one collaborative unit (by executing the operation commit).

3.11.2 Properties

· author: the participant that executed the commit action that the commit object records in the revision history;
· timeStamp: the date and time when the commit action was executed;
· msg: a text that describes what has been changed from the last revision of the committed artifact and explains the motivation for the change;
· revision: an integer which gets incremented every time the artifact is committed;
· previous: a pointer to the previous commit object for the same artifact (if any);
· next: pointer(s) to the next commit object for the same artifact (if any); there can be several ones if the commit object served as base for a branch;
· author: the project participant who called the commit operation which resulted in the creation of the commit object;
· tg: the tag that points to the commit object;
· bt: the subset of tg that contains only the branch tags;
· af: a pointer to the persistent snapshot of the new revision of the committed artifact;
· diff: a pointer to an AfDiff object containing all the differences between af and its revision and
· af. prevRev, its preceding revision in the revision history;
· ea: a pointer to the canonical sequence of artifact actions whose execution would produce af from af.prevRev.
Taken together, the af, diff and ea properties allows a collaborative unit to implement any representation used for commit nodes in RCS such as svn, git, hg and bzr, and in distributed CASE tools with trivial revision policies such as Praxis [4], [15]. Maximizing scalability, involves devising clever combination of these three representations.
Note that a galaxy commit object does not necessarily points to the root of the entire artifact tree as do commit objects in state-of-the-art DRCS git, hg and bzr. This is because the revision operations of a galaxy collaborative unit can be executed any sub-artifact nested down the artifact containment tree. This feature is not currently supported by the consolidated versions of DRCS which revision always apply to the full versioned artifact containment tree of the entire project. However, there is an experimental git library that addresses this need for partial cloning, checkout, commit and merge. But it has not yet been tested on large projects. Revision operations at the low-level grain of individual artifacts seem a valuable option to limit space requirement of non-blessed collaborative units as well as avoiding updating locally irrelevant artifacts. However, how we will illustrate in section 7.4, it also makes the automated avoidance of dangling references among artifacts most complex and thus potentially computationally costlier. This suggests that there exists some fundamental trade-off between artifact grained and collaborative unit grained revision operations. Supporting any grain is thus an important feature of collaborative unit concept proposed for Galaxy. Note that to implement a policy similar to that of current DRCS using a galaxy collaborative unit is simply a matter of using it with a process that forces all revision operations to be called using as first argument the top-level node in the artifact containment tree.
3.11.3 Operations

· clone():Commit, creates a copy of the Commit object;
3.12 Abstract Class AfDiff

3.12.1 Definition

An abstract class representing the differences between two revisions of the same artifact

3.12.2 Properties

· self: the host artifact object that called the diff operation;
· with: the artifact with which the host compared itself by calling such an operation;
· base: the common ancestor (if any) revision in the artifact’s history from which self and with originated before diverging is separate change branches;
· co: the commit node (if any) that points to the AfDiff object as an alternative persistent storage format to the whole snapshot of the artifact revision it committed;

· base2Self: the canonical action sequence which results into self when applied to base;
· base2With: the canonical action sequence which results into with when applied to base;
· self2With: the canonical action sequence which results into with when applied to self;
· with2Self: the canonical action sequence which results into with when applied to base;
3.12.3 Operations

· clone():AfDiff, creates a copy of the AfDiff object;
3.13 Abstract Class AFAction
3.13.1 Definition

An abstract class modeling the minimal set of primitive change actions on artifacts into which any artifact manipulation can be ultimately decomposed. The concrete classes specializing AfAction include the addition, deletion and move of product units, reuse units and method units inside their container product unit. They are defined in section 5.
3.13.2 Operations

· clone():AfAction, creates a copy of the AfAction object;
3.14 Class Tag

3.14.1 Definition

A label put on a Commit object in the revision history of an artifact. Direct instances of this concrete class can be leveraged for a variety of purposes, notably the fast retrieval of release versions.

3.14.2 Properties

· co: a pointer to the Commit object being tagged;
· author: the participant that put the tag on the co commit object;
· timeStamp: the date and time when the tag was created;
· msg: a text giving the semantics of the tag.
3.14.3 Operations

· clone():Tag, creates a copy of the Tag object;
3.15 Class Branch Tag

3.15.1 Definition

A special kind of tag indicating a development branch. This branching as tagging approach pioneered by git is in sharp contrast with the branching as copy approach used by svn. It was one of the most dramatic scalability improvement brought about by git.

3.15.2 Properties

· tip: a pointer to the Commit object that in turns points to the lastest revision of the artifact in the host branch.
· lt: the lock tag that currently locks the branch;

3.15.3 Operations

· clone():BrancgTag, creates a copy of the BranchTag object;
3.16 Class Lock Tag

3.16.1 Definition

A special kind of tag used to lock an artifact for the exclusive, non-concurrent edition of the artifact revision accessible from the Commit object to which the LockTag object points to. This design allows reusing the delTag, publishTag, publishDelTag operations to propagate locks and lock releases among collaborative units.
3.16.2 Properties

· bt: a pointer to the branch that is locked;
· for: the project participant currently holding the lock on bt
3.16.3 Operations

· clone():LockTag, creates a copy of the LockTag object;
4. Definition of views and model fragmentation mechanisms

In the previous section we focused on the concern of defining meta-data to support revision control for software artifact of within any software engineering paradigm. In this section, we specialize the abstract class Artifact defined in the previous section into concrete classes to address the central issue that is specific to revision control within the MDE paradigm: how to group model elements in very large models into intermediate grain structures that can be scalably manipulated for distributed revision control purposes? By “intermediate grain” here we mean any grain between the coarser possible grain of the whole project megamodel and the finest possible grain of individual model elements.

4.1 How to structure model elements and views on them for revision control purposes?

The intermediate grains that we propose are derived from the following reasoning. First, we distinguish between three general classes of intermediate grain structures: (1) flat model partition, (2) flat model element overlapping subsets and (3) nesting containment tree. They are respectively illustrated on the left part of Figure 2, on the right part of Figure 2 and in Figure 3. In these figures, individual model elements are represented by small grey squares, references between them by lines and model fragments of intermediate grains as large white squares or ellipses. Then, we notice that we already used the containment tree structure for the abstract artifact concept that relates the paradigm-independent collaborative unit model presented in the previous section.
[image: image15.png]Figure 2: Flat model fragmentation: partition vs. overlapping model element subsets

[image: image16.wmf]
Figure 3: Model fragmentation as a containment tree with references

In Figure 3, we do not show any direct reference between elements at different depths in the containment tree because such cross-level references can always be realized by a path constituted of intra-level references and nesting relationships between an element and its parent or child in the containment tree.

Then, we notice that the three intermediate structures of Figure 2 and in Figure 3, far from being mutually exclusive, can be combined to maximize representational flexibility. We also notice that the decomposition of a system in subsystems, components, packages or other reuse units, aims at structuring the system into highly cohesive units that are very loosely coupled between them. Such units are thus near partitions. Within the MDE paradigm, these reuse units can thus be considered to partition the model elements of a software model, even though there exist references between elements in different partition set. In contrast, views, aspects, diagrams and other software method units significantly overlap between themselves while cutting across reuse unit boundaries.

These observations lead us to propose the MDE artifact model of Figure 4. In this model the paradigm-independent abstract class CompositeArtefact from the collaborative unit model is specialized into the ProductUnit concrete class. This specialization restricts the nested artifacts of a product unit to be either product units, reuse units or method units. This sub-categorization is mutually exclusive and covers all cases (this is represented in Figure 4 by the OCL invariant attached to ProductUnit). Reuse units and method units are concrete classes that form a mutually exclusive and covering sub-categorizations of the abstract class AtomicArtifact from the collaborative unit model. Atomic artifacts are atomic in the sense of not containing any other artifact. However reuse units contain model elements and method units contain views. There is no contradiction here since model elements are not artifacts.

This design choice allows full decoupling between, on the one hand, the direct structural relationships among elements in the model, and one the other hand, the structural relationships among meta-data used to support revision control of the model. It thus insures the versatility of the key concepts of product unit, reuse unit and method unit for a variety of software modeling languages, methods, processes and application domains. In section 6.7 we also introduce the concept of a revision strategy defined as a mapping from (a) classes of model elements onto product units and reuse units and (b) classes of model views onto product units and method units. A key step in the process of instantiating the general galaxy RCS framework presented in this document into a concrete DRCS service to which MDE CASE tools can delegate model revision control is to define the revision strategy that the concrete DRCS realizes. Note that what we call model element classes for revision strategy definition can but do not necessarily correspond to metaclasses in the metamodel(s) of the modeling language(s) used in the model. They could be for instance model elements that contained elements that together occupy some space threshold.

Similarly, classes of views for revision strategy definition can but do not necessarily correspond to the viewpoints or diagram classes defined used in the model.

Having explained the general design rational behind the model of Figure 4, we now proceed to give precise definition for each of its elements.
[image: image4.png]fn|

File Edit View L.

st Diagams Optons Tods _Analae
SEHOB B -5 o) e nmpmn -] EREBEED

Window Help

zas)

®&S] o

D B-

1 pKIGZ s RefedActon:
1 pkid3 : Refiedaction:
1 pktet : Reffiediction:
1 pkilt ; RefiedActionsi
1 pkilz ; ReffedActionsi
1 pkin : RefiedActionsF.
1 phiName : Refiedact
1 pkiPu : Reffedctions
1 pkiRu RefiedAction:
1 ptpu: Reffisdictions?.
1 ptRu RefiedActionsF.
3 str : ReffiedictionsRel
= ValdationScript1Collat

& Arefactacton
& AnteFactDif

& Colaburit

& Enor

& Galaxy

& Galaxyergestrateay
& GalaxyQuenProcesso
& ParkagerURUClassRul
& ParkagePuRUClassRul
& PackagePuRUClassRul
& | Revsionstrateay

& uiction

& et

> use [Lsage]

.2 ActionMonotaricky
12 AfusvuAction

72 Atomicartefact

12 Atomicy

12 Compoundatefact
2. HistoryUnit

74 inconsistency 3
10 Level

7 MaBinConfict

2. mecConflict

GalaxyergeStrategyMergel.

forered)

)
< BOERET,o : Peuse k)
Feusetin

)

’m

subsats s}

pokeson
i

{subsetsin) [{subsets s}
scontanerfs | 1 | mestedru apia
Procuct Uit v ffortersa) fordered)

contest Mol e std 2 Contaer
Gerve

e —.
e i< ket |
etedERPusexclutes(contaieru)

artaier 0.1 =

s oo

. to ot

ﬁ

0.1 sunder

contest ModsiPefsmtaPraptime
Gerved: metaProp

snstance

Geres: i reveion

i (T N

oy g)
URE “ishowsEsshow nh * vmove(io: bidel)
p ppe— ne() View
Sarget[1 1] wsource y
snaing| | soutoinghe .
tib ©snstance Sshounh
Wodsifat ien e |1
Largetor oteresy
F T i
lsoureeor contet viw -revision etion

contest Mol revision
e revision

et

contest el
nestng xor cros Omglevel

contet Reuse ko derivec:
i ght-Sunon(ou Gongh)

contxt Atsbute ettt
Gervd meta i e

)

ot >selecknestng s ure

contest ModelEtcontainer dervedt
o

contest Mol meta s st
Gerved: metasss name

contest ModelBtcoraned dervec:

e it Conaina = ource Of vslectinstig) target0f
In drectConaned: niondrectContained-»conained)

fncor

omicAtetact

Jete, disint)

b |l

2)=¢]

Figure 4: Concepts to structure models and views for revision purposes
4.2 Class Model Elt

4.2.1 Definition

A model element.

4.2.2 Properties

· uuid: string that uniquely identifies several model element with distinct content contained in different galaxy artifacts as being different revisions of the same reference
· metaClass: a property pointing to the metaClass of which the model element is an instance; it is derived through a reference between the model element of the model and its metaclass as a model element of the metamodel;
· metaClassName: a derived property containing the name of the model element’s metaclass
· mda: the construction trace of the model element in terms of model actions.
· ma: the attributes of the model elements;
· contained: the model elements contained in the model element; an element W contains an element P iff there is nesting model reference from W to P;
· container: the model element that contains the model element;
4.2.3 Operations

· addMa(ma: Attribute): adds attribute ma to host model;
· rmMa(ma: Attribute): removes attribute ma from host model;
· moveMa(ma: Attribute, to: ModelElt): moves attribute ma from host model element to the to model element;
· clone():ModelElt, creates a copy of the host ModelElt object;
· diff(withMeId: String): MeDiff, returns all the differences between the host model element and the model element which uuid = withMeId. The details on how to realize this operations and the structure of its results will be given in D2.2.
4.3 Class Attribute

4.3.1 Definition

A model element property typed by a primitive type such as a MOF
, OCL, Ecore or XML type: boolean, integer, real, string, date, time, dateTime, uri or collections of such types.

4.3.2 Properties

· metaAttr: the property of the meta-model that the attribute , (i.e., from OMG level N down to OMG level N-1) instantiates;
· metaAttrName: a derived property of the attribute containing the name of property of the attribute’s meta-attribute.
· me: the model element that contains the attribute.
4.3.3 Operations

· addMav(mav:PrimitiveValueSpec,): adds value mav to host attribute ma;
· rmMav(mav: PrimitiveValueSpec,): removes value mav to host attribute;
· clone():Attribute, creates a copy of the host Attribute object;
· diff(withMaId: String): MeDiff, returns all the differences between the host attribute and the attribute which uuid = withMaId. The details on how to realize this operations and the structure of its results will be given in D2.2.
4.4 Class Model Ref

4.4.1 Definition

A model element property typed by another model element.

4.4.2 Properties

· source: the model element source of the reference;
· target: the model element target of the reference;

· nesting: a boolean which is true iff the reference models a model element containment relationship in which the source is the container and the target the contained element;
· crossPu: a boolean which is true iff its source and target model elements are contained in different product units, (derived property)
· crossRu: a boolean which is true iff its source and target model elements are contained in different reuse units (derived property)
· crossOmgLevel: a boolean which is true iff the reference’s source and target pertain to different OMG modeling level, for example a reference from model element (level 1) to a meta-model element (level 2) or from a meta-model element to a meta-meta-model element (level 3);

· metaProp: the property of the meta-model of which the reference is a instance;

· metaPropName: a derived attribute containing the value of the name property of the reference’s metaProp property.
· ru: the reuse unit to which the model reference pertains; a model reference is also stored in the reuse unit that stores its source model element;
· sourceRu: the reuse unit containing the source element of the model reference;

· targetRu: the resue unit containing the target element of the model reference;

4.4.3 Operations

· moveSource(to: ModelElt): change source property of host reference to to model element;
· moveTarget(to:ModelElt): change target property of host reference to to model element;
· clone():Attribute, creates a copy of the host ModelRef object;
· diff(withMrId: String): MrDiff, returns all the differences between the host model reference and the model reference which uuid = withMrId. The details on how to realize this operations and the structure of its results will be given in D2.2.
4.5 Class View

4.5.1 Definition

A methodologically defined partial model fragment showing the model elements, references and attributes relevant to a single concern; may represent views in orthographic MDE [2] aspects in Aspect-Oriented Modeling (AOM), diagram in UML modeling, etc.

4.5.2 Properties

· under: the model element, if any, of which the view is a partial fragment;
· showsElt: the model elements shown in the view;
· showsAttr: the model element attributes shown in the view;
· mu: the method unit containing the revision control meta-data for the view;
· vp: the viewpoint defining the schema of the view, i.e., constraints defining what classes of model element, model element references and model element attributes are allowed to appear in the view;
· viewpointName: a derived property containing the name of the viewpoint;
· vwa: view construction trace as a sequence of show and hide actions on model elements, model element references and model element attributes.
4.5.3 Operations

· showMe(me: ModelElt): shows model element me in the view of the host
 method unit;

· hideMe(me: ModelElt): hides model element me from the view of the host method unit;

· showMr(mr: ModelRef): shows model element reference mr in the view of the host method unit;

· hideMr(mr: ModelRef): hides model element reference mr in the view of the host method unit;

· showMa(ma: Attribute): shows model element attribute ma in the view of the host method unit;

· hideMa(ma: Attribute): hides model element attribute ma in the view of the host method unit;
· move(to: ModelElt): moves the view from under the model element under to the model element parameter of move;

· clone(): View, creates a copy of the View object;
· diff(withViewId: String): ViewDiff, returns all the differences between the host model view and the model view which uuid = withViewId. The details on how to realize this operations and the structure of its results will be given in D2.2
4.6 Class Method Unit

4.6.1 Definition

A container of model views for scalable revision control purpose.

4.6.2 Properties

· pu: the product unit containing the method unit;

· view: the view which revisions are controlled by the method unit;

· mua: the construction trace of view as a sequence of method unit operation calls;

4.6.3 Operations

· addView(vw: View): adds view vw to the host method unit;

· rmView(vw: View): removes view vw to the host method unit;

· moveView(vw: View): moves view vw from the host method unit to the method unit to.
· clone(): MethodUnit, creates a copy of the host MethodUnit object;

· diff(withMuId: String): MuDiff, returns all the differences between the host method unit and the method unit which uuid = withMuId.
4.7 Class Reuse Unit

4.7.1 Definition

A container of model elements for scalable revision control purpose. What classes of model element it can contain is defined by a model fragmentation strategy as defined in section 6.
4.7.2 Properties

· pu: its product unit container;

· rua: the construction trace of the reuse unit as a reuse unit action sequence;
· mr: the model references contained in the reuse unit;

· me: the model elements contained in the reuse unit.
· mrFromTo: reuse units that contain model references which source or target elements are in the reuse unit;
4.7.3 Operations

· addMe(me: ModelElt): adds model element me to the host reuse unit;
· rmMe(me: ModelElt): removes model element me from the host reuse unit;
· moveMe(me: ModelElt, to: ReuseUnit): moves model element me from the host reuse unit to the to reuse unit;
· addMr(mr: ModelRef): adds model element reference mr to the host reuse unit;
· rmMr(mr: ModelRef): removes model element reference mr from the host reuse unit;
· moveMr(mr: ModelRef, to:ReuseUnit): moves model element reference mr from the host reuse unit to the to reuse unit;
· clone(): ReuseUnit, creates a copy of host reuse unit with the same properties;
· diff(withRuId: String): RuDiff, returns all the differences between the host reuse unit and the reuse unit which uuid = withRuId.
4.8 Class Product Unit

4.8.1 Definition

Software project structuring unit of larger grain than the minimal reuse units and methodological views for revision control purposes. Allows defining structures of arbitrary grain through a recursive containment relationship. A model fragmentation strategy maps specific classes of composite model elements or methodological groups of such elements onto product units.

4.8.2 Components

· nestedPu: product units directly contained in the host product unit, i.e., its child in the product unit containment tree;

· ru: reuse units contained in the host product unit;

· mu: method units contained in the host product unit.

4.8.3 Properties

· containerPu: product unit that directly contains the host product unit, i.e., its parent in the product containment tree;
4.8.4 Operations

· clone():Attribute, creates a copy of the host ProductUnit object;
· diff(withPuId: String): PuDiff, returns all the differences between the host product unit and the product unit which uuid = withPuId. The details on how to realize this operations and the structure of its results will be given in D2.2.
· To add to, remove from and move product units, reuse units and method units inside a product unit, one can use the operations add, del and move that ProductUnit inherits from it superclass CompositeArtifact (shown in Figure 1).
5. Actions to Execute during the collaborative unit life cycle

In this section, we define two distinct, complementary minimal sets of primitive revision actions into which higher-level ones can all be ultimately decomposed. The first set, shown in Figure 5, specialize the abstract class VuAction. They correspond to the primitive model and view edition actions executed by a CASE tool in response to user actions with its GUI. The second set, shown in Figure 6, specialize the abstract class AfAction introduced in section 3.13. They correspond to primitive artifact revision actions executed by an instance of the galaxy framework providing revision control services to connected CASE tools.

The model actions are:

· NewElt, creates a new model element in the model;

· DelElt, deletes an existing model element from the model;

· NewRef, creates a new model reference between two model elements;

· DelRef, deletes an existing model reference between two model elements;

· AddVal, adds a value to an attribute of a model element;

· RmVal, removes a value from an attribute of a model element
.

The view actions are:

· ShowElt, includes a model element in a view;

· HideElt, hides a model element in a view;

· ShowAttr, display a model element attribute in a view;
· HideAttrf, hides a model element attribute in a view.
Model and view actions must be passed by the connected CASE tool to the galaxy instance framework. There is one artifact action class for each are operation of the three concrete artifact subclasses, ProductUnit, ReuseUnit, MethodUnit and their content, classes ModelElt, ModelRef, Attribute and View. Each operation of these concrete classes is realized by calling the execute() operation of the corresponding action class. For example, if ru is a ReuseUnit object and me a ModelElt object, then a call ru.addMe(me) is realized by the call rua.execute() where rua is a RuAction object which ru role is filled with ru and which me role is filled with me. This reification pattern allows an action to possess two dual aspects: a behavioral aspect encapsulated by the operation that it realizes and a data aspect that corresponds to the trace of calls to this operation.

[image: image5]
Figure 5: Minimal set of primitive model and view edition actions

[image: image6]
Figure 6: Minimal set of primitive artifact manipulation actions.

The artifact actions are:

· AddPu, adds a product unit toa container product unit; reifies the operation add(afId: String) of CompositeArtifact in Figure 1. when afId is the uuid of a ProductUnit object;
· DelPu, deletes a product unit from a container product unit; reifies the operation
del(afId: String) of CompositeArtifact in Figure 1. when afId is the uuid of a ProductUnit object;
· MovePu, moves a nested product unit to a new container product unit; reifies the operation
move(afId: String, ...) of CompositeArtifact in Figure 1. when afId is the uuid of a ProductUnit object;
· AddRu, adds a reuse unit in a container product unit; reifies the operation add(afId: String) of CompositeArtifact in Figure 1. when afId is the uuid of a ReuseUnit object;
· DelRu, deletes a reuse unit from a container product unit; reifies the operation del(afId: String) of CompositeArtifact in Figure 1. when afId is the uuid of a ReuseUnit object
· MoveRu, moves a reuse unit to a new container product unit; reifies the operation
move(afId: String, ...) of CompositeArtifact in Figure 1. when afId is the uuid of a ReuseUnit object;
· AddMu, adds a method unit to a container product unit; reifies the operation add(afId: String) of CompositeArtifact in Figure 1. when afId is the uuid of a MethodUnit object
· DelMu, deletes an method unit from a container product unit; reifies the operation del(afId: String) of CompositeArtifact in Figure 1. when afId is the uuid of a Methodbject
· MoveMu, moves a method unit to a new container product unit; reifies the operation
move(afId: String, ...) of CompositeArtifact in Figure 1. when afId is the uuid of a MethodUnit object;
· AddMe, adds a model element to a reuse unit; reifies the operation add(me: ModelElt) of ReuseUnit;
· DelMe, deletes a model element from a reuse unit; reifies the operation del(me: ModelElt) of ReuseUnit
· MoveMe, moves a model element to a new reuse unit; reifies the operation
move(me: ModelElt, to: ResueUnit) of ReuseUnit;
· AddMr, adds a model reference to a reuse unit; reifies the operation add(mr: ModelRef) of ReuseUnit;
· DelMr, deletes a model reference from a reuse unit; ; reifies the operation add(mr: ModelRef) of ReuseUnit
· MoveMr, moves a model reference to a new reuse unit; reifies the operation
move(mr: ModelRef, to: ResueUnit) of ReuseUnit;
· AddMa, adds an attribute to a model element; reifies the operation addMa(ma: Attribute) of ModelElt;
· DelMa, deletes an attribute from a model element; reifies the operation delMa(ma: Attribute) of ModelElt;
· MoveMa, moves a model attribute to another model element; reifies the operation
move(ma: Attribute, to: ModelElt) of ModelElt;
· AddMav, adds a value to an attribute; reifies the operation addMav(mav: PrimitiveValueSpec) of Attribute;
· RmMav, removes a value from an attribute; reifies the operation rmMav(mav: PrimitiveValueSpec) of Attribute;
· ShowMe, adds a model element to a view; reifies the operation showMe(me: ModelElt) of View;
· HideMe: hides a model element in a view; reifies the operationHideMe(me: ModelElt) of View;
· ShowMa, adds a model element attribute to a view; reifies the operation showMa(ma: Attribute) of View
· HideMa: hides a model element attribute in aview; reifies the operation HideMa(ma: Attribute) of View
As shown in Figure 8, one operation of a model fragmentation strategy defines a mapping from a sequence of Revision Unit actions (i.e., actions on model elements and views received from a CASE tool by a galaxy framework instance) to a sequence of artifact actions (on artifacts and the model elements and views they contain). This design allows to simultaneously: (a) represent Commit and Diff objects as action sequences, which was shown scalable in distributed modeling environments with trivial revision policy such as Praxis [4], [15] , and (b) decouple the representation of model elements and views for user-friendly modeling edition purposes from their representation for scalable collaborative revision control. In turn, this decoupling allows to experiment with a variety of such artifact grains to achieve revision control scalability, in a way that is transparent to the CASE tools connected to the galaxy and, consequently, their users. This is important since different revision policies may be adapted only to projects within a certain range of model size, team size, project lifetime etc. Therefore, the revision policy may have to evolve during the course of the project. Decoupling it from the model element and view representation of the CASE tools circumvents the need for such representation every time the revision policy is changed. Details on the interfaces between CASE tools using the galaxy and the galaxy framework that realize this decoupling are given in the next section.
6. Controlling the collaborative unit lifecycle from an MDE CASE tool

In this section, we explain how the concept of collaborative unit can be leveraged to support transparent interoperability among potentially heterogeneous CASE tools used by collaborative MDE software projects.
6.1 Approach: decoupling and separation of concerns

In the previous section, we explained how the distinction between edit actions performed in an MDE CASE tool and artifact actions performed by a collaborative unit helps decoupling the former from the later. In Figure 7, we propose five separate interfaces to connect an MDE CASE tool to an instance of the galaxy framework. This proposal constitutes a possible initial blueprint for tasks T4.1 (architecture specification) and T4.2 (galaxy core framework) of the project that depend on D2.1. It illustrates how the concept of collaborative unit defined in the present deliverable can be leveraged for these tasks. The key idea of this proposal is to distinguish between five largely separate concerns of revision control and provide one interface and corresponding realization class (or component) for each such concern. These interfaces are described in turn in each of the following subsections.

6.2 The Galaxy Query API

The API GalaxyQuery provides read-only operations allowing an MDE CASE tool to query the collaborative units of a galaxy framework instantiation. It includes operations to search for galaxy users, projects, project participants, collaborative units, push and pull collaboration relations between remote collaborative units, development history tags, including branches and locks, model elements, references and views. It also includes diff operations to compare model elements and views and an audit operation to detect and return inconsistencies in model elements and views. Finally, it includes the checkOut operation that returns the model element or view found at the tip of the current branch in the local collaborative unit associated with a given project-user pair.
[image: image7.png]P” MagicDraw UML Personal fzip [CAU
T Fle Edt View Lojout Diagrams Options Tooks Anabze Window Help x
DEEDB 8 -5~ e -] o nvdpomanvedndze -] | B FS F B 5 5 E

T & E

-
T THhesuc] M ia)] kYo] |
= piu: Refi =
package PedActonsPef Doraibl
o i s R GalmyAcmira Pl c
User(nare g Svng) - ting
=8 s : Rafied et)
= aldations o name S, e St crestrk g) - S
iy et g
o FoFrte pro - Seg, ptict Sting) [
Frofarse prof - Seng, e Sy
FARETAE o i i g ol arict - g)
FlFamte ol o, s o g, PleE e g
PishPerate i S, pusherarct - . pusheeFarih - Seg)
mPushFernes ro - 2. pusherarsch - Srng. pushes arte v)
GalmyaueryAri
sters ascart []
Cistoets) Pt (]
imofrarslpro g) Faicipat 1
R e S) e]
geCotsbLns{ o i, parsc: g) oLt
ilrs(pro - S part i) ColsbLnk 1
sl s prol g, parie - Svng) - CalzbLe 1]
; A Rshers{proj - s, par - o) - ColabLn]
A= s o Sng S) :colab L[]
ey e Tagspro - ving.parch Sting D11, i -Swhg 0.11) - Tag 1]
FiEranchesCpr - Song.parei - Sun 0. 1w g B.113 - SranchTag [1
CitLacks pro - Stong parich g) LockTag [
e S e ST, e SHT .1, 1300t .1 7y eger 1) et
G - G UG, arkc S L. 1] 8010 S .13t s hiar .11 : ot
> use [Usage eVl (ol Sting. prse g 311, aTag0 - ¥+ .11 & g .11 i) e
& hctontons e o g e - S P - S et At g) VT
e (ol S ew t, . et - g e S) i B
T8 apvatuact e pr g, i Se g i g Fson ot
i propk . paien S, w 5ring) - Beonzsveney 1
s atomiciute
2, Atomicy GalaxyLocalRevisionHstoryA Pl
73 Compound. e g e g it e e e 1)
4 Historyunit g tin, it Sing b i, g v, gD :Sing .1, 3t - Wgar 0,11 Tag
,,,,,,, oy arnaneag(p g, parici - Swing. Wi - g 30N - Hing e Tagtems - Svng) L
2, incansisten delTag(pro - Svingparic - Sting, i - S agfam - Sting) |
8 Level adTanch prof g, parc - Srng. i - g, branchlms: g, branche g): BanchTag
g o Sl Qg fobaneia ting)
2, MainConfl rebase(proj ting. pario Sng. v :Sting, branch - Sting,fromBranchi - tring, onoBranch : ting)
4 meConfict
"4 Melnconsis— GalyRevisiontieticiord 1
et ; B g g oien g o s s oo)
4 mmTypet) o £ g, il g, Tompario S, aFarc - g, 130153)
s odelet || e |- - - - - A Fevaetag (o1l g il S, fon S Faho 5. gt : g Taghame ;g <cse>>
i eI oS- S, o e S, e g g o) F=-
4 MBinCortt _ Fock o - g vl i, (et g, (PG g bl e, st Sting .1]): LokTag
i ack(prit | g, i S0P FomPaic b . AranchHD. 1 Sing)
<Im 3
Gatyodsl visiont Pl
& B +cormmii(proj - Sting,partickd: Srng, v : Sting, w : RevisionLit .11, BftTrace : VuActon [, msq : Sting) : Comit
iy || Scommeolprop S g S, i S, esonLe .1} ETags st (1w Sy rr]
Erm 1] otk 1 ilontprat - S i S Wil S, Sarfarict - g, b iew o g (011 Tag Seing 6.1, 5 Wgar B.11) s
Revion il - S it 1, IETanchi .ot Eror (1) Eoian |
(oo s Svng, vl - g, romPael g, aTag - S B.11) - Bror [1
o prf - g, parse g:confist - Swing. prfemed Adhar - 3G)

Figure 7: Interfaces between the galaxy framework and MDE CASE tools
This model element or view is passed to the CASE tool to provide the context for the next Revision Unit revision sequence executed by its user. The basic operation cycle executed by such a participant through a CASE tool connected to the galaxy thus consists of the three step sequence checkOut, revise, commit. Optionally, a lock can be additionally executed before the revise, with an accompanying unlock after the commit. There is no revise operation in galaxy framework API, since model and view revision actions are executed only by the CASE tool on its owned internal model representation. The revise action sequence is then passed to the galaxy framework instance as a parameter to the commit operations of the API.
6.3 The Galaxy Admin API

The API GalaxyAdmin provides operations to administrate the galaxy. It includes operation to add and delete users and projects to and from the galaxy, to add and delete users to and from the participant list of a project, and to establish and close push and pull collaboration relations between remote collaborative units. The network formed by these collaboration relationships defines the collaborative workflow for the project.

6.4 The Galaxy Local Revision History API

The API GalaxyLocalRevisionHistory provides operations to create, delete and navigate among tag objects of a collaborative units. The collaborative unit design presented in section Erro! Fonte de referência não encontrada. and inspired from the data structures used by state-of-the-art DRCS for code-driven software engineering such as git, hg and bzr allows decoupling these operations from the ones that manipulate the artifact objects that contain model element and view versions.

6.5 The Galaxy Revision Notification

The GalaxyRevisionNotification API provides operations allowing a collaborative unit Cu to notify remote collaborative units, which are registered as puller of Cu, that stable new revisions are available at Cu. It includes operations to notify the creation of new commit objects (and consequently of the new artifact versions to which this object points) and new tag objects, including branch and lock tags. It also includes the operation unlock used to notify release of a lock tag.

6.6 The Galaxy Model Revision API

The GalaxyModelRevision API provides operations to exchange model elements and views among a CASE tool, the local collaborative unit to which it is connected and the remote collaborative units from which to pull updated versions of these elements and views that were concurrently committed there by local collaborative units of other project participants.
These operations include:

· cloning part of a remote collaborative unit into the local collaborative to initiate collaboration on a model element or view;

· committing from the CASE tool a new version of a model element or view unit, either to the local collaborative (decentralized workflow, using the commitl operation), or to a single blessed reference remote collaborative unit (automated centralized workflow, using the commitg operation);
· merging two development branches available at the local collaborative unit;

· updating the local collaborative unit with a new version of a model element or view pulled from a remote collaborative unit; this sometimes involves performing first a merge between two change sets executed concurrently by two different participants on their respective CASE tools;
· resolving the conflicts that can result from a merge attempt.

6.7 The galaxy classes realizing the galaxy APIs

One possible simple architecture blueprint for the galaxy framework, shown in Figure 7 and Figure 8 and, is to include one class (or component) to realize each of the five APIs described in the previous section. Although not shown in Figure 7 for conciseness’s reason, each such class would possess one operation for each operation in the API that it realizes. These class operations would realize the services offered by the API operations by calling the general operations defined in the collaborative unit definition of section 3
Many such calls are fairly straightforward since the operations sets offered by the proposed galaxy framework API on the one hand, and defined in the classes defining the collaborative units on the other hand, are very similar. The main recurring differences between their respective signatures are the following. The first results from the fact that there is a distinct collaborative unit for each project-participant pair, whereas a CASE tool may be used by several users to participate to several projects

[image: image8.png]File Edit View Loyout

Diagrams Options Tools Analyze Window Help

NBEEDB & -5 -]

% & P <

B-5

53 11+ ReedhctonaRef sDamariode
32 117 : RefedhctionsRefDemantioc
32 117 : RefedhctionsRefDamantioc
32 1195 : ReffiedactonsRefDemarilo
32 12 :RefiedctonsRefsDamintode
32 v : RefedhctionsRefDemantioc
=2 mePu : RefiedctonsRefsDomin
=2 pkt : RefedActonsRefDomaiiio
=2 pkick : RefiedActinsRefsDomait
=2 pkich : RefiedActonsRefDomail
=2 pkie! : ReffiedactonsRef=Damant
=2 pkil RefiedctinsRefsDomai
=2 philz : RefiedctinsRefsDomai
=2 pkin RefiedctiznsRef:Damainth
=2 pkiName ;RefiedctansRef:Dom:
=2 pkipu : ReffiedhctonsRef=Damaint
=2 pkiRu : RefiedActonsRefDomait
=2 ptpu : RefiedhctonsRefDomaint
=2 peRu RefiedctiznsRef:Damaint
32 str : RefiedctonsRef:Domaintod
= ValdationSerpt1CollbCorfi

12 action

12 anefact

12 atefactacton

"

2 Colabune

& eror

> uss [Usage]

3 Actiontonatoriciy
13 AfusiuAction

13 Atomicirtefact

5 oy
Rl Fe—— D

EXRT i A TS

Revisonstrategy |4 b @

package ReifiedActionsRefsDomainhodel |] Revisionstrategy ||

Inconsistency [
onsistency [

) Inoonsistercy [

it) Inconsistercy

tUnit) Inconsistercy [

<<uses>

U

| <cuses>

71-1, out ru: ReuseUnit[1)

<<use>>

elinit 0. 7], out of Conflict [1]) - Boolean

tUni [0.7], out of Conflio0. 1]) : Boolean

] »

I

Figure 8 : Revision strategy

Therefore, the API operations include two additional parameters to identify the project concerned by the operation call and the participant executing it. The second difference between galaxy framework API operation signatures and the collaborative unit operation signatures results from the decoupling in the galaxy framework between Revision Units (i.e., model elements and views) on the one hand, and the artifacts (i.e., product, reuse and method units) used to persistently store them for revision control. Therefore, while the API operations include Revision Unit parameter identifiers, the collaborative units include artifact identifiers. The classes realizing the galaxy framework API must therefore maps the former into the latter, by using the relationships modeled as associations between the two shown in Figure 4. The third differences between the respective signatures of operations in the galaxy framework API and collaborative unit definitions is that where the former includes version unit action sequences the latter includes artifact action sequences.

As shown in Figure 8, the classes realizing API operations that contain parameter which type is an action sequence or control meta-data represented using such sequences depends on the mapping from Revision Unit action sequences to artifact action sequence encapsulated into a the specific model fragmentation strategy chosen for a particular project. Figure 8 illustrate the key idea of the proposed abstract galaxy framework: to be configurable through the specialization of three abstract classes that serve as intervening processing layer between the operations of concrete classes realization the galaxy framework API and the corresponding operations of the collaborative units and their components.

These three classes are

· ModelFragmentationStrategy, which define how to group model elements and views in product, reuse and method units;

· MergeStrategy which defines, whenever possible, how to automatically merge pairs of differing product units, reuse units, method units and the model elements and views that they persistently store;

· InconsistencyAuditStrategy, which defines what constitute an automatically detectable inconsistency in a model element, a model view, method unit, reuse unit and product unit.

A concrete revision strategy consists of an assembly of one concrete specialization of each of these three classes. Figure 8 also shows which of the classes realizing the galaxy framework API depends (i.e., uses the operations) depends on which of these three strategy components.
7. An example of collaborative unit lifecycle
The previous section showed a high-level blueprint for a galaxy framework that leverages the concept of collaborative unit defined in the preceding sections to support collaborative model construction. The present section gives a simple illustrative example script for such construction using the framework outlined in the previous section. This script involves three participants respectively called yb, jr and xb. The collaborative workflow pattern instantiated in this script is the single blessed repository managed by a human gatekeeper. The gatekeeper is responsible for creating the project in the galaxy, registering its participants, setting up the appropriate collaborative relationships between them, and guaranteeing the consistency of the blessed repository. In the script, galaxy user yb is the gatekeeper, while the two other participants jr and xb are mere developers.

7.1 Configuring the collaborative workflow among galaxy users

Before leveraging the galaxy framework to construct a model, a preliminary step is required. It involves registering users to the framework, creating a project, assigning users to the project and defining the workflow that these users must follow to collaborate on the project.

The preliminary step of our illustrative example script is shown in
Figure 9 in the form of a sequence diagram with eight lifelines:

1. ybCt representing the CASE tool of the gatekeeper yb;

2. jrCt representing the CASE tool of developer jr;

3. xbCt representing the CASE tool of developer xb;

4. GalaxyAdmin representing the GalaxyAdmin API

5. pj1 representing the collaborative MDE project;

6. yb representing the project participant and gatekeeper yb;

7. jr representing the project participant jr;

8. xb representing the project participant xb;

The diagram features 17 messages between these lifelines that illustrate the detail usage of the GalaxyAdmin API to initiate a project and set up a given collaborative workflow. Messages number 1-9 create the project, register the three galaxy users and declare them as collaborators of the project. Messages number 10-17 define the collaborative workflow for the project.

They allow the gatekeeper yb to push and pull revisions to and form the collaborative units of both jr and xb. Conversley, both jr and xb can push and pull revisions to and from the collaborative unit of yb. However, jr and xb cannot connect to each others’ collaborative unit. They thus only collaborate indirectly through the mediation of the gatekeeper yb. This is an example of distributed revision control workflow that still retains some centralized communication aspects

Having presented the preliminary configuration step of our illustrative script, we can now proceed with presenting its model construction and revision steps. This is the object of the next eight subsections. Each such section follows the execution of one revision step in the example script. It contains a stereotyped class diagram that shows a content snapshot for the three collaborative units involved in this three participant script. In these diagrams we use UML packages for two distinct purposes. The first use is to represent the three collaborative units of this galaxy instance. By convention, each collaborative unit is called by adding the suffix Cu (Collaborative unit) after the name of the participant owning it. The second use of UML package is to represent UML model element of metaclass Package. By convention, packages representing collaborative units are white, while packages representing UML packages are blue.

[image: image9.png]foid)siousssnapee L1

(ah-poEd I Ld-plo A)2ieusIndpPe 91

(ahPronegiausnd J4-plo eI gSnaPPE 51
(ahProMe 4N J=ploId)aIoaSnGEPS 71
(arPrnegiausnd 3-plo d)eiouegSnapp 1

(xRN LDl R)2ieusHIndpPe T

(i=pPpiiegiaysnd 13=pIoH)oIouasSIapPE 1} =
" Ld=plo deIouRHINapPE 01
(wos axomiasrone 5

|
I L Lo
wolosg: e — — o — — — — W | L
|

[Guedonrea:anle — — e ©
< TwosnnB-mmsnepe 1| 1 L

Byuooaei0etiosuonepien B

Figure 9: Setting up a collaboration workflow between three Galaxy users

In addition to this dual use of packages, another non-standard notations used in these snapshot diagrams are stereotypes of the form <<vN>> where N is an integer. When it decorates packages used to represent a collaborative unit, N represents the step in the script to which the collaborative unit state shown in the diagram corresponds. When it decorates a model element, it represents its revision number. A third non-standard notation used in these model revision script snapshots are dependency relationships between packages representing collaborative units. Each such dependency is stereotyped by the galaxy API operation call sequence that triggered information to be sent from collaborative unit source of the dependency to the collaborative unit target of the dependency. Operations call sequences are represented by calls between curly brackets and separated by semi-colons in both the dependency stereotypes and the notes associated to them.

7.2 Step 1: blessed repository gatekeeper creates first version of the model, publishES it and the collaborators clone it

During this step, shown in Figure 10, the gatekeeper participant yb uses his CASE tool to first create an initial version of the UML model to build collaboratively leveraging the galaxy. For this purpose, he calls the commit operation twice, first with a parameter instantiated by a model edition action sequence, ybMdEas1, and then with a parameter instantiated by a view action sequence, ybVwEas1.

The execution of these operations results in:

· A UML model in which a package Pk1 containing two classes, Cl1 and Cl2, the latter generalizing the former;

· A commit object ybMdCo1 that points the artifact containing the elements of the UML model.

· A UML class diagram showing all the model elements, references and attributes of the UML model;

A commit object ybVwCo1 that points to the arefact containing the diagram representation of the UML model.
[image: image17.png]AGENCE NATIONALE DE LA RECHERCHE

Figure 10: Blessed collaborative unit gatekeeper creates initial UML diagram and publishes it.

After having called these two commit operations, the gatekeeper yb calls the publish operation to notify the collaborative units of the two other participants, jr and xb, that a new model and a new view of it are now available. As parameters, these publish operations contains the commit objects that were created by the corresponding commit operations.

Upon receiving the notification, both jr and xb then concurrently call the clone operation to create copies of the model and diagram in their respective collaborative units. jr clones the model elements (and corresponding diagram) from the top-level element package Pk1. In contrast, xb clones only the model elements (and corresponding diagram) from the nested element Cl2. At the end of this step, both yb and jr then possess identical full models and views of the project’s initial version in their respective collaborative units, whereas xb contains a partial copy of both with only Cl2.

7.3 Step 2: conflict free concurrent revisionS of the model by collaborators

The next step of the script is shown in Figure 11. This step starts by jr and xb concurrently making changes to their respective copies of project’s first revision. They do so by calling the commit operation twice, one to persistently store in their respective collaborative units the change they made to the UML model elements and another one to persistently store in their respective collaborative units the changes they made to the UML diagram. This practice of making two calls to galaxy framework API operations, one to manipulate model elements, and another one to manipulate views and diagrams that show some of these elements, will be maintained throughout the presented script. We chose it to illustrate how the concerns of model revision (in our case the UML model element containment tree) and model view revision (in our case the UML class diagram displaying chosen elements in this tree) can be cleanly separated while using our proposed concepts of collaborative unit and galaxy framework API. However, it does not precludes a specific implementation of this framework to (a) force diagrams to be attached below some model element in the containment tree and (b) have a single call to the galaxy API operation to simultaneously execute on a model element and its associated diagrams. After locally committing their respective changes to their collaborative units, jr and xb then make them available to xb by (concurrently) calling publish operations. Note that this operation is merely a notification. It does not trigger any form of automatic update in the target collaborative unit.

Hence, after the execution of these publish operations, each of the three collaborative units of the galaxy contains a distinct UML model:

· yb’s unit contains a diagram showing a package Pk1 containing a class Cl2 with no features generalizing a class Cl1 also without features;
· jr’s unit contains a diagram showing a new revision of package Pk1 that contains a new enumeration E1 with two literals l1 and l2, in addition to Cl1, Cl2 and the generalization between the two that it shares with the revision in yb’s collaborative unit; in jr’s version, Cl2 also contain a new attribute a1 of type E1

· xb’s unit contains a diagram showing only a new revision of the class Cl2 with two new attributes, a2 of type integer and a3 of type string.

· In all three units, the diagram provides a full disclosure of the UML model elements, references and attributes stored at that unit.

After receiving the notifications from both jr and xb, yb decides to first update his collaborative unit with the changes made by jr in his. The update operation calls a merge operation that take as parameter (a) the current base revision of the model element (or model view) stored in the local collaborative unit and (b) its more recent revision published by a remote collaborative unit. In our illustrative script, since the changes made by jr in his collaborative unit (remote for yb) were mere monotonic additions of new elements, the automatic merge (and thus the update that called it) of xb’s collaborative unit with jr’s succeeds and triggers no conflict. It results in xb’s collaborative units being successfully updated with the content of jr’s.

[image: image18.png]o eampsoroat
[Eevaanpsor bk
o EsoR)eApS DA }

a
<auopeiaur
<ein

Bus sge
usapog zer

p)2ppc 0k
(@ prbswpAT DAY |

(E— —

)
<<

a
<aiopeaun
<ein

usaog 7o+

w
<<z

B LAUBLEE NG DA |

T
i
i
i
i

G i) Lwee1 DA)

(zsegpuadde zsea spuzeg

O] U USSP AOUDISZIE o155
Vi Gk oo auersisIoauRaUEpUnpR

PSuOIEPNIE U PeyaY aBeoed

| EEEELES

wosugny -

 mooug F

Figure 11: Conflict-free concurrent diagram revisions made by two collaborators

Then yb attempts to update his collaborative unit with the changes made by xb in his. Since these changes were also mere monotonic additions of new elements that were completely orthogonal to those concurrently made my jr’s, this update also triggers no conflict and succeeds.

Step 3 continues at the top of Figure 12 that shows yb notifying both jr and xb that he just updated the content of his collaborative units with the content of theirs. He does so by calling the publish operation, once for the package pk1 model element, and then a second time for the diagram dg1. One important parameter of the first call is the commit objects xbMdCo3 that fills the tip role of the main branch of yb’s collaborative units. For conciseness’ sake, in Figure 12 and the rest of the script, we omit to show this main branch when it is the only one present in a collaborative unit. It is the third commit object for the pk1 model element in yb’s collaborative unit. The first such commit object was created as a result of yb’s initial commit. The second one resulted from the update operation that merged the result of this initial commit with the changes introduced and published by jr’s first changes to package pk1. The third commit object resulted from the update operation that merged the result of this second commit with the changes introduced and published by xb’s first changes to the class Cl2. Similarly, an important parameter of the second call is the commit object xbVwCo3. Just as xbMdCo3, it also fills the tip role of the main branch of yb’s collaborative unit. But instead of pointed to the current third revision of root model element pk1, it points to the third revision of the diagram that visually displays this model element, together with its contained elements. Therefore, yb’s collaborative units contains two parallel revision threads of commit objects on the main branch: one representing the history of artifacts persistently storing the model elements, and one representing the history of the model view provided by the class diagram.
7.4 Steps 3 conflicting concurrent revisionS of the model by collaborators

At this point, jr and xb resume to work in parallel, each one updating their collaborative units with the changes published by yb. On jr’s side the update simply results in incorporating the attributes a2 and a3, originally introduced by xb, into to the class Cl2.

On xb’s side, the situation is more complex due to the different scope of the models stored in the respective collaborative units of yb and xb: the whole package Pk1 in yb’s but only the class Cl2 in xb’s. Since xb remains interested in working only on Cl2, considering that the other elements of Pk1 are irrelevant to his current modeling concern, he calls the update operation on Cl2 and not on Pk1. As a result, he gets the new attribute a1 for class Cl2. However, the type of a1 is the enumeration E1, which is defined outside of the scope of xb’s current model.
This example points out to two possible alternatives for the detailed semantics of the update operation in this case. The first is to maintain the scope of xb’s local copy of the model under construction to class Cl2 and warning him that the type of the newly added attribute a1 is outside of this scope, and therefore a dangling reference from a local perspective. The second possibility is to have update automatically extend the scope of xb’s local model so as to avoid such local dangling references. In our particular case, this involves applying to xb’s current model, the action sequences corresponding to the creation of Pk1, the creation of E1 and the creation of the nesting references from Pk1 to Cl2 and E1.

[image: image19.png]oroz/on/ee
6viL1

2 4
U

[E])
<<uopioun e
<<

o
oo 2o ot -8
ml = - o9 -8
5,5 Anl . oy (8] A=
vid e Y=t
<< v] o e
B T ok a sy Py =—c
oo 4 sten ==
o3 i 4 Py
Jsioig N =
- iy (A==
2 woeoy P || eeeped @
e
1 -
au o] aeped]
@ L 4 o
<> || Guom e o T)
yoope] |
wid o assep [
max i vid ~ateur [
e (A <cern i
T T ol R
o Ll | PR IR vy -
! g
B| [vaoeas paosuon prie A suomvpayEd oBenoed || ooy £ g

 woua -

[CECEH 5=l CEED i EEEEL T

© [E

d mopum saffeuy siool suopdo sweibeg 1O/l man w3 3w

Figure 12: Conflicting concurrent diagram revisions made by two collaborators (part 1)

At this point, it is worth to notice several things:
The two publish operation calls that yb sent to xb’s collaborative unit (respectively shown in Figure 10 and Figure 11) contained commit object parameters; recall from the collaborative unit definition in [image: image10]
Figure 1
 that such object points to the action sequence used to insert the committed model and model view elements inside the artifact persistently storing them for revision purpose. If we assume that xb’s collaborative units upon reception of the publish notification from yb’s collaborative units, persistently stored the uuids of these remote commit objects, it can now request the sub-action sequences, remotely stored under these uuids in yb’s collaborative unit, that its update operation now may need to minimally extend the scope of xb’s partial copy of yb’s model so as to resolve its dangling references.

· This scope extension is not total, since class Cl1 is still not included in xb’s model; indeed, it is not yet relevant to his current focus which is Cl2, since there is no reference from Cl2 to Cl1; while Pk1 is also not directly relevant to xb’s current concern, it is the common container of Cl2, E1 and the reference from Cl2 to E1; thus, the new scope of xb’s model must include it if it is to possess a single top-level containing model element which is often required by CASE tools;

· Had xb chosen in the first step of the script to clone the entire model rooted at Pk1 to start working on the project, instead of cloning only the sub-model rooted at Cl2, he would have avoided the need to either accommodate himself with a locally dangling reference or to require update operations with built-in scope extension preventing dangling references.

This simple example illustrates the trade-offs involved in choosing between potentially partial collaborative unit cloning, commits and updates and only global ones. While the former possess on-demand information flavor that seems more scalable at first sight, the latter allows the collaborative unit operation implementation to be far more simple. All three major DRCS for code-driven development, git, hg, and bzr only allow cloning, committing and updating of an entire project in their current releases. Only the experimental subtrees library of git [8] allows partial cloning, committing and updating. However its usage has not yet been tested on large software projects. Concerning this issue of global vs. local clone, commit and update operations, it is worth remembering that in our proposal, the concept of revision strategy allows decoupling these operations as provided in the galaxy framework API from the corresponding ones as provided in the collaborative unit. While the API operations take Revision Units and Revision Unit actions as parameters, the corresponding collaborative unit operations take as parameters artifacts and artifact actions. This decoupling offers the possibility to explore the trade-off between various policies with respect with operation scope, without having to change the CASE tools client of galaxy framework instantiations.

In the rest of this script, we assume that galaxy framework instantiation in use does support partial cloning, commits and updates. We also assume that the merge operation called by the update operation implements an automated minimal scope extension of partial models, which both prevents local dangling references and insures the presence of a single root model element containing all the others.

With these assumptions, the result of xb updating its collaborative unit from the changes published by yb at the top of Figure 12 is that xb’s collaborative unit is now rooted at package Pk1, which contains the class Cl2 with attribute a1 originally introduced by jr and attributes a2 and a3 originally introduced by xb, as well as the enumeration E1 with literals l1 and l2 originally introduced by jr.

After this update and the concurrent update performed by jr, both jr and xb then concurrently execute concurrent commit operations. With these operations, jr changes the type of a2 from integer to Boolean, moves the a1 and a3 attributes form Cl2 to Cl1 and adds a new class Cl3 as a specialization of Cl1. On his side, xb changes the type of a1 from E1 to integer, deletes E1 which is no longer needed with this change (at least from the limited local perspective on which xb currently focuses), creates a new class Cl3 as a generalization of Cl2 and moves the attributes a2 and a3 from Cl2 to Cl3.

This step of the script continues at the top of [image: image11]
 Figure 13
, where both jr and xb concurrently publish these respective changes to the gatekeeper’s collaborative unit. Like for the first set of publish notification that he had received from jr and xb, yb decides to first update his collaborative unit with content of jr’s. This particular update execution results in one conflict and two inconsistencies shown in the package Errors1 of Figure 13.
The conflict concerns the type of the a2 attribute of class Cl2. While in yb’s blessed collaborative unit this type is integer, in jr’s collaborative unit this type Boolean. Since integer and Boolean are exclusive types in the UML, this type mismatch is a genuine semantic conflict. As a result, the respective copies of the attribute, the one in jr’s collaborative unit and the one in yb’s collaborative unit cannot be merged.

The two inconsistencies concern redundancies that would occur as a result of executing the merge: the attributes a1 of type E1 and a3 of type String would inherited by class Cl1 from its superclass Cl2 and redundantly defined with the same types in Cl1 itsef. Note, that there are two assumptions that need to be made about the galaxy framework instance in use for it to return these two inconsistencies as a result of the update operation call at the top left of Figure 14. The first is that this update operation automatically calls a merge operation that implements UML2’s package merge specification. The second is that after the merge, the update operation then performs an audit operation which, among other things, performs redundancy analysis on the merge result.

[image: image12]
 Figure 13: Conflicting concurrent diagram revisions made by two collaborators (part 2)
This is a possible scenario, but not the only one. Alternative merge and audit strategies includes (a) performing the merge but not including the redundancy analysis in the audit and (b) performing a variation of the merge that automatically removes the redundancies by keeping attributes duplicated in several classes down a specialization path only at the highest level where they appear. Choosing among these alternatives is part of what we call the revision strategy. In the rest of our illustrative script, we will assume that every update first calls a UML package merge (or the specification of its recursive semantics on packageable element pairs for finer grain model elements such as classes) and then performs on the result an audit that detects redundancies.
The type conflict and the two attribute redundancy inconsistencies shown at the bottom left of Figure 13 are instances of the Error subclasses Conflict and MeBinInconsistency (respectively) defined in Erro! Fonte de referência não encontrada.. Conflicts and such inconsistencies involve only two model elements. They are thus also instances of the class MeDiff to define in detail in the D2.2. However, we can anticipate that, as a difference specification, it will, just as AfDiff defined in Figure 1, have a role self, for the most recent local version, a role base for the preceding local version and a role with for an intervening remote version committed after base but before self
. The difference is that for a MeDiff these roles are filled with model elements, whereas for AfDiff they filled with artifacts. The conflict or inconsistency that such MeDiff introduce can thus be resolved simply by choosing for the updated revision either the model element filling the self role or the model element filling the with role. This is done by calling the operation resolve of the GalaxyModelRevisionAPI (see Figure 7). In the our validation script, after receiving the type conflict and redundancy inconsistencies as result of his attempt to update his collaborative units with the latest changes published by jr, yb resolves them by picking the with revision over his self revision in all three cases. As shown at the bottom center of Figure 14. These choices result in yb’s collaborative unit containing exactly the same model and diagram as jr’s.

Yb then attempts to update this result with the latest changes published by xb. This results in four inconsistencies shown at the bottom right of Figure 13. The first two are substitutability violations: Cl1 can no longer substitute (i.e., be used in operation invokations) its super class Cl2, since it locally redefines to enumeration E1 the type of the attribute a1 which it inherits with type integer from Cl12. Similarly, Cl2 can no longer substitute Cl3 since it locally redefines to Boolean the type of attribute a2 that it inherits from Cl3 with type integer. The third inconsistency is a redundancy warning signaling that attribute a3 locally defined in Cl1 is also inherited by Cl1 from Cl3 via Cl2.

These inconsistencies are cases of good design pattern violations. In contrast, the fourth and last one is a case of metamodel violation : the UML metamodel prohibits generalization cycles, but one would be introduced by merging package Pk1 from yb’s collaborative unit with package Pk1 from xb’s collaborative unit. Indeed, in the former Cl2 generalizes Cl1 which generalizes Cl3, while in the latter, Cl3 generalizes Cl2. The four generalizations resulting from merging the two would form a loop. All four inconsistencies are instances of the class MeNaryInconsistency defined in Erro! Fonte de referência não encontrada., since their detection involves more than two model elements not related by containment relationships. For example the fourth one involved six elements (three classes and three generalizations), that do not contain each other.

Sophisticated audit operations must be called by the merge operation (itself called by the update operation) in order to detect inconsistencies such as substitutability violations and generalization cycles. In addition to the model fragmentation strategy into product, reuse and method units and the merge strategy, a third, largely orthogonal aspects that compose a revision strategy is the audit strategy. It defines what errors in an automatic merge result must be automatically detected to trigger rollbacking the merge and require the modeler to change his version to resolve the inconsistency.
How yb deals with the inconsistencies just described is explained in the next step 5 and in Figure 13.
7.5 Step 4 blessed collaborative unit GATE KEEPER DELEGATES ERROR RESOLUTION by creating branches and publishING them
The gatekeeper yb realizes that the conflicts in the last updates that he respectively received from his two collaborators seem to stem from a disagreement among them. Since he has no strong personal preference between the two alternatives, he thus opts to create two development branches, one that merges yb’s visions with jr’s last revision, and another that merges yb’s visions with xb’s last revision. This is shown in Figure 14where we introduce an additional non-standard notation, using UML packages to distinguish distinct branches inside a collaborative unit. At this point we need to clarify that from the time they are created, each collaborative unit includes one main branch. We omitted the explicit representation of the main branch in the packages representing the collaborative units in the diagrams illustrating the first four steps of the script already presented only to avoid cluttering them.
Thus, the revision v4 of ybCu’s collaborative unit should really contain a package called BtMain nested inside the package called ybCu and nesting the package called Pk1. Since yb had already solved the conflicts between his base revision and jr’s last published one by choosing for all conflicts the alternative from jr’s, before attempting the failed update with xb’s last published changes, his current sole main branch contains the same model and diagram than the main branch in jr’s collaborative unit. Yb thus starts by renaming his main branches BtJr, for both the artifacts storing the model elements and the artifacts storing the diagram displaying them. Since, as shown in [image: image13]
Figure 1
, in our proposed galaxy framework branches are special cases of tags, yb executes two calls to the operation renameTag. It then calls the operation addBranch twice, one to create a new branch for the model elements and another to create a new branch for the diagram. Note that in our proposed framework, creating a branch is merely creating a new BranchTag object that points to the tip Commit object for each artifact which revision history is stored in the collaborative unit.

[image: image14]
 Figure 14: Blessed repository gate keeper delays conflict resolution by branching

This tip Commit object itself points to the most recent element of the revision history for the corresponding artifact.
Having renamed the old main branch BtJr and having created a new main branch BtMain had no effect on the current branch. After these two operations the main branch is still the old main branch which is now called BtJr. At this point yb wishes to incorporate the latest changes published by xb to the new main branch. To do so, he must first switch the current branch to this new branch BtMain.

Then, he must revert it to the last revision before the updates with jr’s latest changes, since they introduce inconsistencies when merge with xb’s lastest changes. He can now, as shown at the bottom left of Figure 13, update the new main branch with xb’s lastest published changes
.

The attempt to update the reverted version of yb’s main branch with xb’s latest published changes fails, returning to the errors shown at the bottom left of Figure 13. The first is the conflict between the type of the attribute a1 of class Cl2: integer in xb’s updated collaborative unit vs. enumeration E1 in yb’s base collaborative unit. The second and third are warnings about the redundancy of having a2 and a3 attributes defined Cl2 in yb’s base collaborative unit, while they are defined in Cl2’s superclass Cl3 in xb’s updated collaborative unit. Yb solves the type conflict by choosing a1’s enumeration E1 type from his base collaborative unit, in effect rejecting xb’s change of this type to integer. In contrast, he removes the warnings’ causes by accepting xb’s moving up a2 and a3 definition from Cl2 to its new superclass Cl3. The result of these calls to the resolve operation is the revision v6 of the branch BtMain in yb’s collaborative unit.

Yb then publishes to both jr and xb the changes that occurred in his collaborative from revision v4 that was stored in his collaborative unit when he last received published changes from jr and xb, to the current revision v6. To do so he first notifies jr and xb of the changes he made on the branch structure of his collaborative units. He notifies his collaborators of the branch renaming between v4 and v6 by calling the operation publishRenameTag. He then notifies his collaborators of the updated content of this renamed branch by calling the operation publishTag. He then calls the same operation to notify his collaborators of the content of the newly created main branch. Finally, to avoid receiving again conflicting concurrent changes from his two collaborators, he locks the artifacts so that from then on only jr can now alter them. He notifies this locking to both jr and yb.

7.6 Step 6 one collaborator merges design choices from both branches into one, deletes the other and publishES it

With exclusive access to the galaxy model, jr then updates his collaborative units with the changes that yb just published. This operation and its result are shown on the left side of Figure 14. These changes not only include the changes made to the data in yb’s collaborative units, i.e., the model elements and diagrams stored in the artifact objects, but also to changes made the development branching meta-data. The update thus takes into account the renaming of the main branch BtMain into BtJr, and the creation of a new branch called BtMain. Since yb created this BtJr branch to match the content of the latest version of jr’s BtMain branch, the update his successful and jr’s collaborative unit now contains an exact copy of xb’s.

By executing a diff operation on the two branches, jr identifies their differences:

1. the location of class Cl3 in the class hierachy, below Cl1 in BtJr vs. above Cl2 in BtMain;

2. the location of attribute a1, in Cl1 in BtJr vs. in its superclass Cl2 in BtMain;

3. the location of attribute a2, in Cl2 in BtJr vs. in its super class Cl3 in BtMain;

4. the location of attribute a3, in Cl1 in BtJr vs. in its super-super class Cl3 in BtMain.

Each of these difference correspond to an error that yb received when attempting to update the last consistent revision of Pk1 from both jr’s last published changes and xb’s last published changes.
Figure 15: One collaborator resolve conflicts and deletes useless branch[image: image20.emf]<<ref>>

<<ref>>

<<nest>>

<<ref>>

<<nest>>

<<nest>>

<<ref>>

<<nest>>

<<ref>>

<<ref>>

<<nest>>

<<ref>>

<<nest>>

<<nest>>

<<ref>>

<<nest>>

By locking Pk1 for exclusive access by jr, yb in effect delegated to jr the task of solving these inconsistencies. Jr does so by deleting Cl1 the model in the BtMain branch since it had no feature there and then deleting the BtJr branch.
These two operations correspond to choosing the second option for all four alternatives listed above. After executing the local change operations, jr publishes them to yb’s collaborative unit and releases the lock.
As shown at the top of Figure 15, yb then uses those changes to updates his collaborative unit. In order to verify whether xb agrees with them, yb then publishes his updated collaborative unit to xb. He also locks it so that only xb can now change it.
7.7 Step 7: Collaborator agrees with changes made by the other

Upon receive the latest changes from yb and the accompanying lock, xb now attempts to update his collaborative unit with these changes.

It results in two binary conflicts:

· The type of attribute a1, enumeration E1 in yb’s latest revision vs. integer in xb’s base revision;

· The type of attribute a2, Boolean in yb’s latest revision vs. integer in xb’s base revision.;

Xb resolves both these conflicts by choosing the types in yb’s latest revision. This results in all three collaborators having the same model and diagram versions in their respective collaborative units. After resolving conflicts, xb’s unlocks both the model and the diagram.

7.8 Step 8 blessed collaborative unit owner creates release1.0 I
In the last step of our galaxy framework illustrative use case, yb’s tags the current revision of the model and diagram as release1.0 of the project. This is an appropriate moment, since at this point an identical and consistent copy of the project is stored in all its collaborative units. As shown in Figure 18, yb creates this release1.0 by first calling the operation tag on the model and diagram in his collaborative unit. He then calls the operation publishTag to notify his two collaborators, jr and xb, of this new tag. Since yb’s last notification message to jr’s collaborative unit was a lock on both the model and the diagram, xb additionally calls the operation unlock on both to release the lock and thus allows jr to resume making changes taking this first release as base revision.
[image: image21.emf]Figure 16 : Collaborator agrees with changes made by the other.
[image: image22.png]0T0Z/0T/ST
60:€T

{(eweL'zpo'L6p)Y Moys 28]
(z19'16p)ig Moys

(16p' SSEI0) MBIA MaU } <<bA>>

= (zZ1o)peles<-| seAMAGA n3ax

<<l 15>
N

. SN N
{{ak'z19'1Bpjeuojo10ax | {(A'16p)euoio 10l
9A'Z)au0p10a% | {(ak'id)suoiooul} |
/
|

N

K- == —— === - — - — - — 3

cosselg MU} TINGQX | {(400 MAGA ax L Bp)uSIgNd DAk (oo mAafiLEp)ustand DA/

= (z/0)1081e 5<-| SETPINGA o | (1GOPNAA @ P)usIand 00k} LoOPWAA I Lid)ysiand 10ak}

noal
<<0/>>

{(119216'119 21055 1, B)jext maul L
(2197 16'710' [eJeush'z | B)joy Meu : : : - - x5 @ w007 2jo1u0)
{(z16131d'z 16 WaweEpabeyoed 1yd)jedppe 14 uoneusioyy (6] | [szipudosd [|-uawmoq G| ajonuod
(Z1.6'Uoye Zile1oUS6 Jj3 Meu {(21921,6'16p)sex Mouls wn
))) 119z 1 6'L6p)iay Moy s souesur =) el SUOepEA [,
(.20, Wweu'zjo)ieAppe {(z16'1Bp)F Moy S uomensqy & e T BSIOEEA ()
(zioid o' sweEpabeyoed 1yid)jedppe oesn o9oEAL T BSUOREpIEA [,
(z10'ssep g mau : . : : (eWeU Z0' | Bp) i MoY'S : . < SSIETIADSUORERIEN [
= —{(100 MAGA' L sET MAGA' | Bp JIwwod AR - — — - — (o' Bp)Jaxy moys __N_H.ﬁ“w e e &
11D, 8UeU’ | |2)[eAPPE {(LOOPWAA"| SEIPNGA’ |>1d)0 o 0g A} ‘(z10' 6P)T Moy s o ge0el TidasuonEpeA (3

{(Lpuid o' wsweEpadeyoed 1d)jedppe neBouBy 7
(110" SSEl0 iF MU (BWeLr |0’ | Bp) My Moy S s A
. Lo pid'LBp)se moys . -
Midh,'BWeu' id)ie Appe ‘(110" LBp)IT Moy s bexped o o
(15d ebexord) g MaU } aoepa o— o =
= | Se3pNgk ‘(sweu’d'| Bp)y moys === & w M
‘(1>1d" 1L Bp)y3 Moy s eibeia ssep (] poy=s)
Jnajesedas h -
{(1Bp'ssBp) MaIA MaU } . adeys abour B =

naghk . Z Z =
= | seIMAQA @ouepuadaq b=}

<<OA>> N Jopuy =t

31 ap 2108 = sunisiapabexted LI
N ol &
Uowwo £
BO@A [« wsio BAM.-@! L1/ SHT=%uE x & @
X 8 « b DIeloOTIdSuORepIeA [| eibeiamyssepmingabexed (] | ove1 rdiosuonepen (] | 93081 LTidunsuonepien (%] | ssves Tiduosuonepiien) | £eoe1 L diosuonepie (] | zsoe1 LTidinsuonepien sou b0 < G %] a8
OFH ol "ponurewiog\dopsagsiof: < @&« W BT EH QT
aply anguay sashjeuy suno suondo sswweibeiq anA 1Bup3 APl

ﬂ |80e1) pduosuonepie \ (3]] 11duosuonepnie suonoypelyey sBesoed

loptsaq\iainex\siasn\] dizpur[apojuiewiog - 09T UOMIP3 [2U0SIAd TN MeIaDIGEIN

Figure 17: Blessed collaborative unit owner creates first release tag and publishes it.
7.9 Conclusion on the galaxy framework usage script

The script just presented illustrated, on a simple example, the usage of the proposed galaxy framework interfaces to MDE case tools. Although concise, this use case example is a thorough validation script for these interfaces since it contains instances of calls to 24 of the 31 operations provided by the read-write interfaces. The only ones not covered are commitg, the centralized alternative to commitl, removals duals of addition operations in the GalaxyAdmin API (rmUser, rmProj, rmProjPartic, rmPullRemote, rmPushRemote) which side-effect are trivial and the rebase operation of the GalaxyLocalRevisionHistory API which is only used to simplify histories of old and very branchy projects and thus could not be illustrated on a simple example. At each step of the script, we showed the MDE CASE tool provided view of the project revision for each of its participant. To build these views, the MDE CASE tool calls the read-only operation of the GalaxyQuery API.

The operations of the GalaxyLocalRevision, GalaxyRevisionNotification and GalaxyModelRevision APIs validated by this script are all realized by calls to corresponding operations of: the generic association class CollabUnit mediated by calls to concrete specializations of the abstract class RevisionStrategy. Therefore, this script also validates our definition of the galaxy collaborative unit which is the focus of this deliverable.

In the next and last section of it, we give a concrete example of a model fragmentation strategy and we show instances of the artifact data structures that persistently store model element and views for revision control purposes in a collaborative unit when following this strategy.

Figure 18: Blessed collaborative unit owner creates first release tag and publishes it.

8. An example of model fragmentation STRATEGY
In this section, we provide and explain examples of the internal representation stored in a collaborative unit of a model and one view of it. More precisely, we show the artifact objects stored in revisions v3 and v4 of xb’s collaborative unit in the example script of the previous sections. The diagram and model elements contained in these versions are shown on the left-side of Figure 12, in the middle and at the bottom. This figure provides the external, modeler’s perspective that xb gets of his collaborative unit content through his CASE tool connected to the galaxy instance. In contrast, Figure 19, Figure 20 and
Figure 21

 below provides the internal, system perspective of the collaborative unit data structure that persistently store this content for revision control purposes. More precisely, Figure 19 shows the artifacts storing the model elements shown in package xbCu stereotyped with <<v3>> in Figure 12, Figure 20 shows the artifact storing how the diagram shown in xbCu stereotyped with <<v3>> displays these model elements and
Figure 21

 shows the artifacts storing the the model elements shown in package xbCu stereotyped with <<v4>> in Figure 12. Since the changes made from revision v3 to revision v4 of xb’s collaborative unit only alter the model elements that it stores and not the way these elements are displayed in the diagram, we omitted, for conciseness’ sake, the diagram artifacts for revision v4.
As explained in section 6.7, a revision strategy is decomposed into a model fragmentation strategy, a model merging strategy and an inconsistency audit strategy. Since the latter two define the behavior of a specific instantiation of the galaxy framework, in concert with the generic behavior specified in the operations of the generic association class CollaborativeUnit, they remain beyond the scope of this deliverable D2.1. These strategies will be the focus of the next deliverable D2.2. In contrast, a model fragmentation strategy defines how to project model elements and views into the three generic artifact classes that we proposed in the definition of the galaxy collaborative unit: product, reuse and diagram units. Such strategy defines the structural modeling approach chosen when instantiating the abstract galaxy framework into a concrete galaxy RCS. Illustrating the definition and usage of one such model fragmentation strategy thus belongs to the scope of deliverable D2.1.
[image: image23.png]0T0Z/0T/ST
OTET

a
1 . . . a
& 1
<<uoeIELUE>> a
<<bhs> <<UEIELNE>>
<<hron

bus :ger
1803y g+
e 13 jes]
= a0
i <<zhon

a
1

(]
[B B B <<uoesaUnuE>>
R0 Zer <<ims

ao

<<zhs

‘izoopi k L

TJnoax | H B . : B a
<<tr>

= 15e3Ix

= \Seapnl = LseamAl

= S s e oo

BR@A [~ %o EAM- @ .1/ ZnEm%HE
eibeIqnusseOMNP6Red ()| 22001 LTS uonepIeA (] | 530 LidiosuonepieA (8] | Sa9ei L TidosuonepIeA) | €20l LTidisuonepieA (5] | ZaoeatTaduosuonepyen (5| uomvni

4 uoewiojur

wny
e

"y eoepA &
uopsodwos ®
uonebasby
uonenossy /-
uonesiesuz9
sbeped O]
oepar o—
assep
webeiq ssepy
nejesedas

313D Y0 oae
anE
oo 03

(zee "v821) @ 3j0quiks ap sed

x 6@ o007 91010
Sowpudoid [|wewnoq @] a1enuod

nogi .
g 3
oo 3
=
Y=
EY=
(=
Y=
=
=
=
suoisispsBepEd L
o O

2-1 zg
x & @ WBLBLYUO) 3 BIQIY.
S9u 0 <> [%]y 5

< ponuRwoaoIRT I+ 9+ W BT EEN
aply anguay JsssAleuy sjnQ suondp sswweibeiq anp ssup3 Al

jopsaq\ainex\siasn\:d] iz

[9pOUIEWOQ - 0'9T UONIP] [BUOSIA] TNIN MEIQRIBEN g

Figure 19: Artifacts representing revision 3 of the validation script’s model in xb’s collaborative unit (cf. Figure 12)”.

The strategy we choose here to present can be intuitively specified in natural language as follows:

1. Create a root product unit for the whole model;

2. Create one product unit and one reuse unit inside this product unit to store the UML2 primitive types;
3. Create a separate product unit for each different UML2 component or package in the model;

4. Reflect nesting relationships of UML2 components or packages inside larger gain components or packages by nesting relationships between the product units created for these components or packages;

5. Create a separate method unit for each diagram in the model

6. Create a separate reuse unit for each different non-relationship classifier (e.g., classes, interfaces, components) and package in the model;

7. Nest the reuse unit storing a component or package element inside the product unit created for this component or package element;

8. Nest the reuse units storing all the model elements packaged into a UML2 component or package inside the product unit created for this component or package;

9. Store the features of a classifier inside its reuse unit;

10. Store the generalization between two classifiers inside the reuse unit of the more specific classifier;

11. Store the association from a source classifier to a target classifier inside the reuse unit of the source classifier;

12. Store the references between two model elements stored in the same reuse unit in this reuse unit;

13. Store the reference of meta-association specific and type from a model element me1 of reuse unit ru1 to a model element me2 of reuse unit ru2 ≠ ru1 in ru1;

14. Store the reference of meta-association packagedElement from a model element me1 of reuse unit ru1 to a model element me2 of reuse unit ru2 ≠ ru1 in ru2.

The artifact resulting from applying this model fragmentation strategy on the revision v3 of the model stored in xb’s collaborative unit (shown in Figure 12) is shown in Figure 19 It is an object diagram containing instances of the classes ProductUnit and ReuseUnit defined in Figure 4. Recall from section 4 that we propose to structure galaxy artifacts are organized to form a containment tree. Following the fragmentation strategy just described, the root object of this containment tree is a product unit, called mdpu, which contains all the other artifacts of the project’s model. It contains two nested product units, ptpu, which contains the model-independent UML2 primitive type and pk1pu which contain the package pk1. Ptpu contains only one reuse unit ptru which in turns contains the UML2 primitive type model elements. In the diagram of Figure 19 we only show the two primitive types appearing in the revision v3 of xb’s collaborative unit, i.e., integer int and string str. Pk1pu contains one reuse unit pk1ru which contains the model element pk1 and one reuse unit cl2ru which contains the class cl2. In addition to pk1, pk1ru also contains three other model elements, enumeration e1 and its two enumeration literals l1 and l2. It also contains five references pk1e1 from pk1 to e1, pk1l1 from pk1 to l1, pk1l2 from pk1 to l2, e1l1 from e1 to l1 and e1l2 from e1 to l2. In addition to cl2, cl2ru also contains three other model elements, a1, a2 and a3 one per attribute of cl2. It also contains seven references: pk1cl2 from pk1 to cl2, cl2a1 from cl2 to a2, cl2a2 from cl2 to a2, cl2a3 from cl2 to a3, a1e1 from a1 to e1, a2int from a2 to int and a3str from a3 to str.

On the top right of Figure 19, we show the product unit and reuse unit action sequences that represents the construction trace of the units displayed in the rest of the figure. Task T2.2 of the project, we will investigate what representation is more scalable to be passed for change notification purposes among collaborative units: the structural snapshot, a structural diff from the previous revision snapshot, the behavioral diff consisting of the artifact action sequence or some combination of the three. One last thing to explain about Figure 19, is that references internal to a reuse unit are highlighted by a green frame and font, whereas references across reuse units are highlighted by a red frame and font. In the artifact base shown in this figure, there are thus eight internal references and four cross-references. Minimizing cross-reference is a simple general scalability heuristics when devising a model fragmentation strategy, since changing an internal reference can be done by loading into main memory and searching inside a single reuse unit, whereas a changing a cross-reference involves loading and searching two such units.

Having shown an illustrative example of persistent storage format for model elements in a collaborative unit, we now discuss an illustrative example of persistent storage format to keep the information of which model elements, references and attributes are displayed in each view of the model. The example is given in Figure 20. It is an object diagram that contains an instance of the class MethodUnit defined in Figure 4. This instance stores the class diagram that shows all model elements in revision v3. The left side of Figure 20 contains a sequence of method unit actions which constitute the construction trace of the method unit shown in the same figure. It is the translation, at the internal collaborative unit layer, for the model fragmentation strategy specified at the beginning of this section, of the view actions executed by the CASE tools of yb, jr and xb at the galaxy framework API layer, and which collectively resulted into the class diagram shown in revision v3 of xb’s collaborative unit. Similarly than for the model artifacts, such method unit action sequence constitutes an alternative representation of the method unit object network shown in the same figure. Either one or some clever combination of the two could be passed among collaborative units for scalable notification of changes in the views and diagrams that correspond not to changes in the model but only to visualization choice changes over that model. The scalability strengths and drawback of each representation will be investigated in T2.2
[image: image24.png]0T0Z/0T/ST

el rG

(osz ‘ovz1) € ajoquiks op sed |

Djauppe

i
U
a m
<cuogiaunus>>| | <<iA=>
Esy i

g e
e | S
s o . w o
e [piods i
w© w
0 I Po— B o

vid
<<sr>
DX

<epr>

ol

<epr>

Aax e (eeepze H

<aioppisunEs>
e

2l
i

e a F buns - e+ . x & & WooZ sjgAuc)
I'abepedjgmau <<topeIBWNUE>> | E JaBa Ze+|
= sezoiansk pore . feppitep: B e 14 uoewioyur [| |seieudoid B | uswmdoq |~ alenuod g

[Ty k! C7 I
pesvibal 3 = souessur (= sares TidaSUonEpIEA (5
i+ Pid uomensqy o1 midinsUoNEpIEA ()
w <cern ey gaveiL Tl asuonEpEA [

adfjaypaous haict- = zseamApx| ganed nidinsuonepien [

200 o uonvRg i vid ¢ o ORI
<<on> <<en uonsodwoy 2
e : : - : : uonebaiby 7
|| i a uonepossy

LGk pBiEpciyax i nogt .
ak cpyeepanine 3| o i uonesifeIuP9 /- ook 23
= . . . P . . <o sbeyped o og
s e i = o
= e o s
= oo 2ot 1310 assep 5

Y 9 -
R ¢
ne g @ | o welbe ssep =

) Py B
L P g ’) 2 : s =
<cgros eouepusdsa . Y=

- B B B BEEL Joupuy g Y=
o <<z ||| L +~a1 3p oog oue suoserbEEd 1
BN = oA
T e——] ooy 0

BO@Ai [+ wifo: BAM.@: .1/ ST a%eE X B
X @ « » DIRIOOTIAUDSUONPIRA] | eibRIanusseDMna6Bped () | £20ei LTS uonepeA (5] | 5992 LTidinSuonepIeA (] | 59921 LTidosuonepien (] | £9oeaLTadosuonepyen (]| zooei Ldosuonepie/ fxepes (5] Teves mduosuonepien] | 52 vg]-0iv <> | 0w G| % | Qi 5

@ B 5 [- [« “ponurewoq\dopsaasn\n|: « @4 & - W HTE I
aply anguay Jeskleuy SIOnO suondo sewwesbeiq anp Jeup3 seNpL

loptsaq\iainex\siasn\id] dizpurjapojulewIog - 09T UOMIP3 [2U0SIAd TN MeIGaIGeN g

Figure 20: Artifacts representing revision 3 of the validation script diagram in xb’s collaborative unit (cf. Figure 12)”.

To conclude our presentation of illustrative examples of artifact data structures internal to collaborative units, we show in Figure 21 the artifacts in xb’s collaborative for its next revision v4 originally shown in Figure 12. These updated artifact object network results from the execution on the artifact shown in Figure 19 (corresponding to revision v3) of the artifact action sequence shown on the left side of Figure 21. This action sequence is itself the translation of the model action sequence from revision v3 to revision v4 of xb’s collaborative unit show in in Figure 12, given the model fragmentation strategy specified at the beginning of this section. Let us compare, on the one hand, the model element, galaxy API level differences between revisions v3 and v4, and on the other hand, the artifact, collaborative unit level differences between these two revisions.

At the model element level the differences are:

1. attribute a1 type changed from enumeration type E1 to primitive type integer;

2. no longer needed enumeration E1 (and its two literals) deleted;

3. new class cl3 created;

4. attributes a2 and a3 moved from class cl2 to class cl3;
At the artifact level these differences translate into:

1. reference a1e1 deleted from reuse unit cl2ru and new reference a1int created in cl2ru;

2. model elements e1, l1, l2 and the references from and to them (i.e., pk1a1, e1l1, pk1l1, e1l2, pk1l2) deleted from reuse unit pk1ru;

3. reuse unit cl3ru created and added to product unit pk1ru; model element cl3 and reference pk1cl3 from pk1 to cl2 added to cl3ru;

4. model elements a1 and a2 and references to and from them moved from reuse unit cl2ru to reuse unit cl3ru.

[image: image25.png]0T0Z/0T/ST

€TET

h =]

a e

a
" 1 %

=] 13 a0

<<uogesawnU>> . Bp)uaue gl 0. <cuopeiawnua>>| | HO i3

<<in> ueigRn 100 <<im> <<im> <suoizlBUplEly | <SS
DILWOI 0. Py s s

Buus : ge+ [0301 } Buns : ger S o

uealoog i ze+| |13:1e+ ueajoog (ze+| |13 e+ Ueajoog : ze+ 13 e

EE) EE) . . . EE) E) iR o
<<IAs> <<zn> << <<zn> <<zn> <<

id id id

<<gh>> <<pr>> <<gn>>

noar uremg E]
<<gr>> <<gn>> <<in>>

noal

<<GA>> . x & @ W00z 3j0u0D

“14 uonewuiojur [| | seipudosd [[“juawnoog G| 210AU0D Gy

p)aepdn ol van)/ [

2pdn 0. } v [ey —

E uomensqy & e 1T sUOnEpEA [

sbesn

3 a0 “y @vepE 5

<<uopesawnuas>| | D <cuoeRUNUB>| | <<iAss
<<i1r> <<in> <<1A>> T

oo 15
baveAL T BSUOREIEA ()
uomsoduc) gane1 T DSUOnEpEA (3

uoneBauby * Zeneaid sunEpEA [

<<uofeaunuz>> T uonenossy /- a@:a:um%z”mwm» m

<<in> [~ o
Buns : ge+ abepeq O3 Trogx -

ER) EE) a0 [T}
Uealoog - ze+ 13 Jes
<<in> <<tr> «zrs «zrs ooeag ey o o &

20 1 . sssep B o =
[P id <<zros <<th>> weibeiq ssep o M
<<pn> <<gn>> m— TS =
e

ureng ing SHte o oo
<<gh>> <«<lro> . . oIT . L foy=

! J0upuy g Y=t
nogk <<A>> “'31 3p 2o 2= suoisiapsBeNIEd T

<<gA>> AN i
({ 53581 1cuasuonepie [1 iciosuorepne Asuonavpauay sBexoed e i

BO@A ~%oe EAM-@ .1/ ZiiEm%nE] LRI 9P SIY
ibeigmysseDNgAbeped [| 250 TidpsUonepIeA]| 990eiLTadiosuonepien [202 Tidinsuonepien]| caveLndisuonepien (]| zaoel Lidinsuonepien (]| womvin]| 610) |2y p|“qiv <=1 2| " % “qv &

OFH = HEEE® “powurewoq\donsaa s « @+ & - W BT E LU
aply anguay Jeskleuy SIOnO suondo sewwesbeiq anp Jeup3 seNpL

19
<<in>>

6us : ge+ 5 6uns :ger
Ueal00g © e+ 13 1B+ ueaioog : zer [ERTS

dopisaq\ainex\siasn\:2] diZpur|apojuIEwO - 0'9T UONIP3 [UOSIAd TN MeIGDIGeN ¢

Figure 21: Artifacts representing revision 4 of the validation script’s model in xb’s collaborative unit (cf. Figure 12)”.

9. WHEN is A strategy Scalable?
A strategy has to be scalable in order to manage the revision control of huge models. From a theoretical point of view, a strategy is scalable if the size of the artifact remains constant (in order of magnitude) with the model size and if the number of messages sent to deal with revision control is bounded. From a pragmatically point of view, a strategy is scalable if the artifacts and the messages can be handled by the underlying Revision Control System (RCS
) using an acceptable amount of resources and in an acceptable time frame.
9.1 Definition

To measure the scalability of a strategy, we define the following concepts:

· Model corresponds to the whole model that is collaboratively edited in a galaxy;
· Size(Model) corresponds to the size of a model, in number of model elements;.

· Artifact corresponds to the set of artifacts used by a galaxy.

· Product corresponds to the product units used by a galaxy
· Reuse corresponds to the reuse units used by a galaxy
· Method correspond to the method units used by a galaxy
· Size(Artifact(i)) corresponds to the size of the ith artifact stored in a galaxy’s collaborative units. It is equal to:

· 0 if it the artifact is a product unit.

· the number of model elements that it contains, if the artifact is a reuse unit.

· the number of model elements that it references, if the artifact is a method unit

· VuActions corresponds to the sequence of model (elements) and view edition actions executed by a developer;throuh his (her) CASE tool connected to a galaxy framework instance;
· AfActions corresponds to a sequence of artifacts actions sequence executed by a galaxy framework instance in reaction to VuActions;
· Size(VuActions) is the length
of VuActions;
· Size(AfActions) is the length of AfActions;
· Artifact(AfActions) is to the set of artifacts appearing as arguments of an action in AfActions;
· MAS (Maximum Artifact Size).is the maximum number of model element in the largest galaxy artifact;

MEM (Maximum number of Exchanged Messages) is the maximum number of messages exchanged among collaborative units of a galaxy to reflect an update to a new version of a model fragment or view
?;

· card(Artifact(s)) is the number of artifacts needed to store a given model and its various view following revision strategy s
9.2 Theoretical Scalability

In order to be theoretically scalable, the size of artifacts should be far inferior to the size of the whole model. Otherwise, a few artifacts will contain the majority of the model elements, which presents the following scalablity problems:

· Loading in main memory any model element contained in those overly large artifacts becomes too space and time consuming;
· Locking any model element contained in those overly large artifacts will result in locking a a large fragment of the global model , namely all the model elements the ones that are contained in the same artifacts than the one being edited by one developer; this results in locking most developers out of their current tasks most of the time;
· Exchanging any model element contained in those overly large artifacts will then result in prohibitively costly exchange of needlessly large sets of model elements;

· Versioning any model element contained in those overly large artifacts will result in needlessly versioning all model elements contained in the same artifact.

Consequently, if the size of the artifacts is not bound, the approach does not scale up.
Quantitatively, this requirement is expressed by the first Theoretical Scalability Property (TSP1), which defines a bound:
(TSP1) |Max(Size(Artifact(i)) – MAS | ≤ (

This is a necessary but not sufficient theoretical scalability condition. In addition, another parameter should be bound: the number of artifact actions performed by a galaxy framework configured with a given strategy in response to model modifications typically
carried out by developers. If this number is not bound then each time a developer commit its last modifications, two many messages will be exchanged among the collaborative units of the framework to update the model within an acceptable response time, Here we talk about typical modifications, i.e., those that are actually commonly performed by developers in real, industrial MDE projects. We do not worry here about any theoretically possible sequences given the action vocabulary we provided in section 5.

Quantitatively, this second scalability condition is expressed by the second theoretical scalability property (TSP2):
(TSP2) (VuActions (TypicalActions |Size(AfActions) – MEM | ≤ (
9.3 Pragmatic Scalability

From a pragmatic point of view, existing revision control systems fail in managing a huge set of artifacts. As a consequence, a strategy is more pragmatically scalable than another one if it needs fewer artifacts. .

Quantitatively, this is expressed by the first pragmatic sclalability property (PSP1) :.

Let s1, s2 be two strategies, s1 is more pragmatically scalable than s2 if and only if Card(Artifact(s1)) c< Card(Artifact(s2))
Additionally, existing revision control systems fail in scalably versioning tightly coupled artifacts. In such cases, one change made to a model by a developer may require to be propagated into changes to many artifacts, the revision control system must then open most artifacts in order to perform conflict detection during a merge.
Quantitatively, this is expressed by the second Pragmatic Scalability Property (PSP2
):
Let s1, s2 be two strategies, s1 is more pragmatically scalable than s2 if and only if Card(Artifact(AfActions))s1 < Card(Artifact(AfActions))s2

So while PSP1 compares the structural scalability of two strategies, PSP2 compares their behavioral scalability. PSP1 measures the impact of a change in terms of the number of data structures onto which the consequences of the change need to be propagated. In contrast, PSP2 measures that impact in terms of the number of operations to execute on these data structures to perform such propagation.

9.4 Example
This section assesses the scalability of the revision strategy given as an example provided in sections 7 and 8.
9.4.1 Theoretical scalability

This strategy is theoretically scalable since it verifies both TSP1 and TSP2.
Regarding (TSP1):

· Max(Size(Artifacti)) = F
· Where F is the maximum number of feature per classifier.
We can reasonably state that MAS is a constant (a class contains at most 100 model elements, then | F – 100 | ≤ ().

Regarding (TSP2):

· Size(AfActions) = K * VuActions
· Where K is a constant. Indeed, for each action in VuAction, at most K actions are needed.

We can reasonably state that MEM is a constant as a typical change is a bounded sequence of actions (K_VU), then | Size(AfActions) – K*K_VU | ≤ ()..

9.4.2 Pragmatically scalability

As the pragmatically scalability, we can state that:

· Card(Artifact) = 1(PU Project) + P*(PU Package) + 1 (PU BuiltIn) + 1 (RU BuiltIn) + C*(RU Non Relationship Classifier) + D * (MU Diagram) = 3 + P + C + D

· Where P is the number of packages, C is the number of non relationship classifier and D is the number of diagram.

· Card(Artifact(AfActions)) will depend on how much classifiers are classically modified conjointly by developers.
10. References
[1] Atkinson, C., Bayer, J., Bunse, C., Kamsties, R., Laitenberger, O., Laqua, R., Muthig, D., Paech. Barbara, Wust, J. and Zettel, J. Component-based product line engineering in UML. Addison-Weslei. 2001.

[2] Akinson, C., Stoll, D. Orthographic modelling environment. In proceedings of the 11th International Conference on Fundamental Approaches to Software Engineering (FASE’08). 2008. Budpaest, Hungary.

[3] Atkinson, C., Gutheil, M and Kennel, B. A flexible infrastructure for multi-level language engineering. IEEE Transactions on Software Engineering, 35, 2009.
[4] Blanc, X., Mougenot, A., Mounier, I. and Mens. T. Incremental detection of model inconsistencies based on model operations. CAiSE’09. 21st Conference on Advanced Informatin Systems Engineering. Amsterdam, The Netherlands. 2009.

[5] Canonical Ltd. The Bazaar wiki. http://wiki.bazaar.canonical.com/

[6] Canonical Ltd. Bazaar 2.x benchmarking results. http://wiki.bazaar.canonical.com/Benchmarks

[7] Canonical Ltd. Bazaar supported workflows. http://wiki.bazaar.canonical.com/Workflows

[8] Chacon. S. Pro Git. APress. 2009.

[9] Chacon, S. Why is Git better than X. http://whygitisbetterthanx.com/

[10] Collins-Sussman B., Firtzpatrick, B. and Pilato, M.C. Version Control with Subversion. O’Reilly. 2008.

[11] Kruchten, P.B. The Rational Unified Process: an introduction (3rd Ed). Addison-Wesley. 2003.

[12] Object Management Group. The Meta-Object Facility. www.omg.org/mof/

[13] Object Management Group. The XML Metadata Interchange. www.omg.org/technology/documents/formal/xmi.htm.
[14] O’Sullivan. Mercurial: The Definitive Guide. O’Reilly. 2009.

[15] Mougenot, A., Blanc, X. and Gervais, M.P. D-Praxis: a peer-to-peer collaborative editing framework. DAIS’09. 9th Internation Conference on Distributed Applicatio] n and Interoperable Systems.

[16] Murta, L., Dantas, H., Oliveira, H., Lopes, L. and Werner, C. Odyssey-SCM: An integrated software configuration management infrastructure for UML models. Science of Computer Programming. 65(3). 2007. Elsevier.

[17] Murta, L., Corrêa, C., Prudêncio, J.G. and Werner, C. Towards Odyssey-VCS 2: Improvements over a UML-based Version Control System. In proceedings of the ACM/IEEE ICSE Workshop on Comparison and Versioning of Software Models (CVSM08), Leipzig, Germany, May 2008, pp. 25-30.

[18] Sriplakich, P., Blanc, X. and Gervais, M.P. Collaborative software engineering on large-scale models: requirements and experience in ModelBus. SAC’08. ACM Symposium on Applied Computing. Fortaleza, Ceara, Brazil. 2008.

[19] Steinberg, D., Budinsky, F., Paternostro, M. and Merks, Ed. Eclipse Modeling Framework (2nd Ed.). Addison-Wesley. 2008.

� A domain entity such as a UML class consists of many domain elements (e.g., its ownedAttributes, its ownedOperations, its nestedClassifiers, etc.) and many domain references (e.g., the references between the class and its ownedAttributes, ownedOperations, etc). The same is true for domain relationships such a UML association which also consists of many domain elements (e.g., its type, memberEnd, ownedEnd etc.,) and many domain references (e.g., the references between the association and its type, ,its memberEnd, ownedEnd etc.)

� View are defined in section � REF _Ref278041190 \r �4.5.1�.

� Here and in the rest of the document, we will use the word diagram meaning “the subset of model elements show in the diagram”, not meaning the visual concrete syntax of these elements in the diagram.

� i.e., the one pointed to by the tip commit object of the host collaborative unit’s head branch.

� In this document we call “host” the object which operation is invoked.

� Svn calls mine the revision we call self and calls other the revision we call with.

� Note that nearly all actions discussed in this script from now on is duplicated, one handling model elements and the other the model’s diagram. In the rest of this explanation we will focus on describing the operations handling model elements since the one handling diagrams are identical except for the first parameter which is dg1 instead pk1.

�Doit on comprendre qu’un attribut est une spécialisation de ModelElt ? Ca ne semble pas être le cas d’après la figure 4

�Pourquoi ces opérations ici et pas avec les AddMa, DelMa dans ModelElt ?

�Qu’entend-on par « réification » dans ce contexte ? N’est-ce pas plutôt l’inverse : les opérations sur les sous-classes réifient celles sur les classes abstraites, non ?

�… using an acceptable amount of resources and in an acceptable time frame

�Number ?

�Dans le model ou dans l’absolu (ex. limitation liée à l’outil ou à la plateforme) ?

�Pas clair…

the maximum number of messages exchanged among collaborative units to reflect an update to a new version of a model fragment or view�?

�Consuming?

�Que cherche-t-on à exprimer exactement ? Je crois comprendre que le MAS correspond à une valeur théorique (une borne) qu’on cherche à calculer, mais ce n’est pas clairement dit

�Typically?

�Puisque PSP1 et PSP2 sont deux évaluations quantitatives de la même grandeur (scalability) comment sont elles reliées ?

�???

�Mérite d’être un peu développé (ex. parce que les paramètres précédent dépendent des approches et/ou des implémentations propres à chacun de ces systèmes)

�Cherche-t-on à dire que si on décide que le nombre maxi de feature par classe est 100, alors il ne faudra respecter cette contrainte ??? !!!

© Erro! Nome de propriedade do documento desconhecido. IF "" = "9" "Company DOCPROPERTY "A_Plant" * MERGEFORMAT " "Erro! Nome de propriedade do documento desconhecido." * MERGEFORMAT
Erro! Nome de propriedade do documento desconhecido.
 Erro! Nome de propriedade do documento desconhecido.. All rights reserved. Confidential and proprietary document. Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Export_Control_Text2" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Export_Control_Text3" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Export_Control_Text4" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.
This document and all information contained herein is the sole property of Erro! Nome de propriedade do documento desconhecido.. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of Erro! Nome de propriedade do documento desconhecido.. This document and its content shall not be used for any purpose other than that for which it is supplied.

	Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Natco_Box1a" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.
	Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Natco_Box2a" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Natco_Box2b" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.
	Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Natco_Box3a" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Natco_Box3b" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.
	Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Natco_Box4a" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.

 DOCPROPERTY "V_Natco_Box4b" * MERGEFORMAT Erro! Nome de propriedade do documento desconhecido.

Erro! Nome de propriedade do documento desconhecido.
Page 1 of 105

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 103 of 105

[image: image26.png]0T0Z/0T/ST

orel »
d

(25 "0v6) @ 210quiAs 3p sed

15, = SuBNssEEW P
e

R —

e —
T

—
e

—
T

asie) = aigeu
TS

LSNP, = AU IgERU
B T

P
e

P —
TR

55600, = auBNSSEIORIRU
i

.
o

N x & W00z 3jonuod
13 uoneuiiojur 5] | | svpudosd [|uawnoq G| ~ai0nuod
Waoigpaberoed, = auENdoldEIaw . : : : : oy

T

22U = J2EjEypUNodU
S — Away H
TR uonavnAshy
- - - . : o soagnn AR T
2besr] asn o
[——— gy Tebesn]

s
g - e uoneBey

T : possv /

J e — g
abepeq O3

7] e s : o
awsgpaBeoed, = auedosgeau ErA ossep

L L [— weibeiq ssep)
Rzl

ByuoogeooTidiDsUO:
st UELIDQSESSLON VPRI | 48
2L3P WOB o6 || oy s onpeyicy ¢ hd e
210N & | v ewingsyexsuonavayEy | nad e
I O8I USRI gn 1on s D (5] 11 oURig e suori vpia sBefed WOy I
ERCRIE]

BO@A [« %o EAM-@F L1/ ZiiEm%nE &0 UsWBULUTD op o3
)| sy (8] pessuy (8] | 300l Lduosuonepiien (8] ~DaeIoidioSuoRepIeA [| “eiBeIansseomng ELEEE R L
OEH [(5 [[« “powuewoq\donsagsn\d| - - & - W HTELS U

aply anguay JsssAleuy sjnQ suondp sswweibeiq anp ssup3 Al

N\dopisag\ainex\siasn\:J] diZpurapoputewoq - 0'9T UONIP3 [eUOSIAd TAIN MeIGRIBEN 4

[image: image27.png]0T0Z/0T/ST

6TET rG

o

a0k, = awendoigeraw Buins, = aleNsse|oRIaLI
TPHIRPON TS Ee Jrgs moys- |- s Moy TARPOW TS

L 2NAIYPAUMD, = LN doIdelaw 122y, = alweNsse|DeIRW
AT TS mous 5 Moy, RPN

a0k, = awendoigeraw €8, = anjen JALUB, = LIV fuadoid, = aleNsselORIaLI
oIS PO T yIZe Jas moys G Y e s moys 3 Moy TARPOW °

I moys TWBp
Yo moys WGP

ez . ,2INQURYPAUMO, = aLweNdoIJelaL 28, = anjen LU, = BLLENYEIAW fuadod, = aleNsselORIaL
‘(gega)an moys | Bp

“{uge)ew moys | 6p TPURPON 2270 Jeds moys. Iy U s moys I3 Moy TARPOW ®

£&,8N moys || Bp

PR . 204, = awedoidelaw . LU, = BLLENYEIAW g] uadoig, = awessejoeiaw |-

e o s T Bp TPURPOW 1318 Jas moys T Y e s moys 3 Moy TARPOW I°

‘(ze@a)un moys w1 Bp L

éwumx nnﬁ gm“ ANGURYPAUMD, = aweNdolderaw AW, = BWeNIHYEIaW ,SSE|D, = SLIENSSE|OBIW N X # wooz 2joAued.

1 TeusPoRE) Teus mous | 5 S TRATVEEE] S MOyS gs Moy, ~ATPRENEE] . 14 uoewojur [| [seipudoid B |uswmog @] “alonuod

iy moys Ty | 6p van)/

JJuawajgpabexded, = awendoidelaw AW, = BWeNHYEIaW JJeJ@yriuone WU, = Wepsse|oelRW souesul (=) JoesEpUROALID)
b —_— uomensqy 1 KWy 5
ORI TS Mous - e Tvswous | [1@s mous: T ay

TOHIPPOW: ZO . T LA ¢ " WPPON & abesn 3 o

g sDRT 4 Aoy

[EJ2) UMD, = aLLENdoIgelaL e T T T pp—— wonsodus [eB2301] 38 o>

TR aTE. Jus mous T Ty AT myswous | [1gs mous; PPN uonebaiby 7

uonenossy /-

JJBI3}IpauUMo, = awendodela LAWEL, = 2LeNPyelaW LUDJeJAWINUT, = 2LUBNSSE|O.IaL uonesifeiauzs

M mous B0 e abeped 0]
e\ MOy S AL B ToHRPON IS T WAV TS TERPON T8

i Moy s TN L 6p Avsmots | [g oepE o

- . . assep
wawaigpabeoed, = awendoideiaw JDid, = anjea ,ALBU, = LIV ,abeyoed, = aueysse|oRaw T

Swous
ToURPOW T To Jas moys TG T R Tivswous | | BV TAEPON Tl e
e Moys AL Bp uumoys | | uumoys adeys abeuwr [§

Ad)a moys T L Bp ouepusdaq
,wesBeIgssel, = aeNguodMan

Joupuy g’
14Bp = ma w T Bp Ul moys, TUNPOTEW - THIOP UELIOgsE LN TpEL
“WUNPOUEN Mau = nATLBP } SIRTTOP nu ‘21 3P 3108 oa¢ o o

BN || v ewonsadsionsgpayEy | nad =1
I [{ we beigeAngxpious deugmesbegnssei nungebesoe (5 1spanueuiogs sysuonoypeiey obeyoed owios 0 o

BO@A [+ %o BAM.@: .1/ SN e%eE x & @ WBWBUYUOD 3P B1G1Y
X @ « » fbeinyssepmunasbeed (5] |20 LidinsuonepIeA ()] | ABsieasuosinay (] [1uneiod (€] 1043] | wapesouy (] [pesowy (] | pees Liduosuonepien €] | ~0aeeoTidlasuonepien] | weibeiagAnoaxsaousdeusniwebeiamyssepnundaBexed (%] | -2y g “wv <>| 0y 2|0y %] Qv &

OFH = 5 (5 65 (®)© [+ powurewoqdomsaasnid|; - 2«4 - W B THAQ
aply anguay Jeskleuy SIOnO suondo sewwesbeiq anp Jeup3 seNpL

I\dopisaq\aimex\sias\:D] diZpur|apojyuIRwoq - 0'9T UOMIP3 [UOSIad TN MeIGPIGeN g
_“l -y

[image: image28.png]0T0Z/0T/ST

c »
| ozer | o A

(105 "s801) @ 3j0quiks ap sed

sueNsseIDeIRw o 04, = aweNdoigelaw
o
- RPoW RPN ISTE
2om0s| fyadod, = suwensseioersw |-
LANQUIYDEUND, = auENdOdEIaW oTEe
TR e
B0, = BUWENSSED R
ol R] oI { .80, = swendoideiau
s oy | o[samed] suwensseronew |
LB LANQUIYDEUND, = auENdOdEIaW el
eseR T . m e .
n o 5med sse10, = BUENSSEIOEIAW
o oW e
4V auswaizpabesoed, = awendoigelaw
I)
JE1BUD, = aweNdolgelaw
P amed| ogeaieiauso, = aWENSSEDEE
wned PO £ u A B Wooz apmuod
93ds, = awendoigelsw _____ECPOVE N S . 3l
. Satpudold [|-uaun: ~alonu
TPHPPON : ZPEdl '3 uogewsoyur (8 | |sgipudosd (9 |uawindoq F] 2l0auod &
=Y . >
04, = aweNdoIgelaw sovesu = || —
oo Ausdoig, = suwensseoew [o Pl
e . UDRITNASARY
EnURYpEUN, = aueNdo el oy ovepenr o [Aoy
] sse10, = awensseroeiu | e ey [abesn] asn o>
7 LI + uopebaiby F
AUaWEIIpa0E e, = SLENdoIdEIE o Q
Juswaigpate o s 2
n + uonesIRIRUZD /-
[) . abopes
T deyE o—
abey0Ed, = BUIENSSEIBIEW [
s31n03] u - assep 5
weibeig ssep]
w [T - ®
EpoiTE
ngpaiseu =
. ByuooaE oo T oSUD:
ngsueiios UGB YL TPAY | 45 =
4 aLep OB o || oo e mad o
. SN || v ewogsgaysuonvpasy : ndd &
POIIS AN USISSTIIE B0QnsSeonNgaBe oo) 11sponusiogs)austoiypayey abexoed owwo) I awiE
x & @ WBWBLU0) 9P BIGIY.

ETEEE T]
4 powuewoq\donsed s\ - 4 & - W B TEH DT
aply angusy Jeskjeuy SO suondo sewweibeiq an\ soup3 JaNpy

[N\dovisag\iamex\siasn\:d] dizpur|apojyuiewoq - 0°9T UoNIP3 [euosiag TNN MeigaiBeN ¢

[image: image29.png]0T0Z/0T/ST

VLET G N N N BN— ~ " IR IS L LAL .4

(625 “2221) e apoquiks op sed

buss :ger
ueapog ze: | [13: jer
€12 20 ! oun 00X b

Vid

<G

: oung sge
noax . * ||| eeioog : cex
<ssne -

€ noaA zrManosarpnx
{304 Ly Ok ROSEI DA] |

(W XX
X oo |

| v=omuod
D)siepdnIonX

Daiepdmidax } |

ce+

1803WI ¢ jex

ao BuLS “ger
«<zhos uesjoog : ze+

@

Vid . ouls : ges . k

<> ueaioog ‘ger uespog < zee nogi 3
nogx €1 (48] Tromk £
o B | e
Heg

: : : . r 93

s
=
=
A=
: : : . =
nyak (=
<<gh>> 3] ap aYog s suoisiapsBeNIEd T
N ol &

A28 L LduaguoRERe. (d195UoRERMIE ASUORo VRarjay abeyoed

({28 rvtussuonepte] | icissuanepmie Asuona vpersey otex BRI

BOWA - xoe EAM.-@F L1/ SiTwYHE) xs© wewsugiospeiy |
ZeLLndasuonepi]| worvnA T EEET L

ce:-wWEBTALZA

IY anA Joup3 Jawdl

ioptsaq\uainex\siasn\D] dizpuriapojulewoq - 0'9T UONIP3 [eu0siad TN MeI@RIBeN ¢

[image: image30.png]0T0Z/0T/ST
STET

a
i i
E

a
<cuopeALUES> <<uoneaunUa>>
<<bhs> <<iio>

bus :ges
uesioog izee| [13: ier

@ a0
<<t <<ths

RS

ao
<<zren

bid

<<gren

vid

<o

oleseaiey Oleseapy

ol
noax el

e
e El

nen o <<uopewNUE>>
P Dk} | i

e o bus : gev {

uop)oesesusindionk ||fluesog izes| |13 jer ! .

¢ piBe LusIna 1) = = - x & & 100z 3jeRuo)
- “14 uonewuiojur [| | seipudosd [[“juawnoog G| 210AU0D Gy

e iws | |<zhn
2 S e Y

souessur (=

Did

bug g : : : ey : : : bung - ge+|
ueapog ‘zex ueapod : ze+.

) oresesioy)
P <> .
R =y e
RS iy . . : uonsodwoy 2
uoneBasby 5
. uonepossy |
i uogestieipuz9 nogi 03
] @beyoed] o L3
<o P—— nog)
i

sssep 5
[O e R

ueaioog izes| [13:ie
R) nejesedas P
Y=

<<l <<thon
e
EH o =

<<ghon i Y=t
"1 3p 20G wae suoisispsBepEd L

noak N i

<eiren

({seservuasuomen SSUONERNE ASUO YPalyas aBewded Fi
BRO@ A~ wnoe BAM- @] £/ maguvHE 9 xee WawBUTD 3p 210y

* 0 < » | sovesmaduosuonepyen ()| Gerensuosiou] | wungaiod]| 013 (]| wapesauy [| pesouy]| seoerLndinsuonepien]| ~2qeioondinsuonpien i | ~eibeionyssepmindsboped]| 200 1duosuonepien [oaeindiosuonepien § EXEEE T ELEE
ERER] 5 5 [[« “powuewoa\dopsaasn\d| @& - W B TESU
aply anguay JsssAleuy sjnQ suondp sswweibeiq anp ssup3 Al

loptsaq\iainex\siasn\id] dizpurjapojulewIog - 09T UOMIP3 [2U0SIAd TN MeIGaIGeN g

[image: image31.png]i File Edit View Lsou Diagams Options Tools Analyze Window Help

DB E08 B -5~ -] [cus. nModpomanvodelmize + || | [&] 3 [E) [

®&S] o
@ BR-w

B pKidZ ; Refiedhction:
1 pkid3 : Refiedaction:
1 pktet : Reffiediction:
1 pkilt ; RefiedActionsi
1 pkilz ; ReffedActionsi
1 pkin : RefiedActionsF.
1 phiName : Refiedact
1 pkiPu : Reffedctions
1 pkiRu RefiedAction:
1 ptpu: Reffisdictions?.
1 ptRu RefiedActionsF.
3 str : ReffiedictionsRel
= ValdationScript1Collat

& ArteFactDif
& Colaburit

& Enor

& Galaxy

& Galaxyergestrateay
& GalaxyQuenProcesso
& ParkagerURUClassRul
& ParkagePuRUClassRul
& PackagePuRUClassRul
& | Revsionstrateay

& uiction

& et

> use [Usage]

& ctorblanatoricty
4 apvsiuaction

8 atomiciutefact

8 atomicky

4 Compoundavtefact
4 Hstoryunit

4 inconsistency

8 Level

4 MaBinCorfict

4" meConfict

EXRT 1] A

o i et 6 rracacion)]

todelBt ‘

ribute. ‘

T
4

e
ceoute) [1 1[rexecute)

i undo [HeeMa
ceout 1 1[rexecute)

W Jundo| Db
*[rexecuta) [q[rexecuten

idRu_| undo | L] Ru |1 AR o A
Me | undo Me Me [T idMr |unda. 1M mr |1 R Mav | undo Mav.
:

_ ModsRef

Attribute

[image: image32.png]BOEE

Tuese

[osponxae], |
[vmopm | opn

o

wepow

+ Lo
U
outo) £

femal

0 I 9 S 52 B]|~ cevwrponseuaeonusnio): - @ -6 - W OB LU
dpH mopuy szjeuy siooy suondo sweibeig oMl weA WPI B :

